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In the FORTRAN notation in a write statement 14 lines from the bottom of the
page, H should be changed to AH. The corrected notation would be as
follows:

WRITE(6,126)DTTL,DTTF,DTWI,DTWF,RMIN, AH

Insert the following statements after FORTRAN statement 402 (before 8th line
from bottom of page):

Cc TEST FOR ZERO VALUED DENOMINATOR
CKDEN=RHO1*COS(TH1)-RHO2*COS(TH2)
IF(CKDEN.GE.1.0E-10)410,405

410 CONTINUE

Insert the following statements after FORTRAN statement 602 (after 7th line
from top of page):

C TEST FOR ZERO VALUED DENOMINATOR
CKDEN=RHO 1*COS(TH1)-RHO2*COS(TH2)
IF(CKDEN.GE.1.0E-10)614,604

614 CONTINUE

The absolute value of iy and i should be used in Subroutine Six which evalu-
ates the transformation matrix. Therefore, the second statement on page 72
should be deleted and replaced by the following two statements:

RAII=ATI
CALL SIX(A11,A12,A21,A22,A31,A32,0MI,OMEGAI,RAII)

Also, the present one-line FORTRAN statement 900 should be deleted and
replaced by the following two statements:

900 RBI=BI
CALL SIX(B11,B12,B21,B22,B31,B32,0M,0MEGA,RBI)

NASA-Langley, 1968 Issued 9—2”-—68
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Page 78: Add the following statement between lines 1 and 2:
U3=ABS(U3)

Page 83 (table III): Under the heading DV1Z (12th column), delete the minus signs
before the first six numbers and insert minus signs before the last nine
numbers; under the heading DV2Z (15th column), insert minus signs
before all fifteen numbers.
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A COMPUTATIONAL METHOD FOR TWO-IMPULSE ORBITAL
RENDEZVOUS AND TRANSFER PROBLEMS

By Robert L. Collins and Sylvia A. Wallace
Langley Research Center

SUMMARY

A detailed derivation of exact equations and an associated computer program with
which the basic parameters involved in transfer or rendezvous between two arbitrary
elliptic orbits may be calculated are presented. The computations are exact in the sense
that the Kepler solutions for bodies orbiting in a point-gravity field are used. This
method deviates from the '""classical" approach based on the theorem of Lambert, inas-
much as it uses the true anomaly and the Kepler equations for iterating to the desired
rendezvous transfer time. The method has a unique feature in that definite boundaries,
dependent on the problem input, are used which limit the range of the true anomaly, and
thereby reduce the search effort required in the iteration procedure. The program pro-
vides for a solution to problems where the transfer angle is less than 360°. Examples
are given for three particular uses of the program: (1) interplanetary transfer between
massless planets, (2) near-planet orbit rendezvous, and (3) orbital transfer.

INTRODUCTION

It seems appropriate to provide a useful technique for the computation of velocity
increments and other important parameters involved in the problems of orbital rendezvous
and transfer by use of the solution to the exact equations of motion. Various programs
and techniques exist at this time; however, they are either unpublished or are not of a
sufficiently general nature to be used in the variety of orbital problems one might desire.
(For instance, see refs. 1 to 4.) It is desirable, therefore, to have a simple and yet gen-
eral computational method which will solve the problems of: (a) interplanetary transfer
between massless planets, (b) planet orbit rendezvous, and (c) orbital transfer. The pur-
pose of this paper is to give the description of the analysis required for the solution of
the rendezvous problem from the exact Keplerian relations. The fundamental problem is
that of determining the velocity increment required to rendezvous from some initial inter-
ceptor orbit to some final target orbit as a function of transfer time. Also determined are
eccentricity, semi-major axis, initial and final anomalies, and other parameters associ-
ated with the transfer orbit. Although the problem, as stated, is a rendezvous problem, it



is also possible to interpret the results for use in studying the orbital transfer problem.
It is assumed that the Keplerian orbital quantities are known in advance for the target
vehicle and that the initial interceptor orbit is known either from its Keplerian orbital
elements or from relative coordinate data. The coordinates chosen are referenced to the
target orbit, and another axis transformation will be necessary if the user desires the
results and input referenced to some other axis system (such as the ecliptic). Figures 1,
2, and 3 show the coordinates and position symbols used to describe the orbits and fig-
ures 4 and 5 show the (input) information needed on the position of the orbits.

A solution to the rendezvous problem may be obtained by specifying the transfer
time for the interceptor to travel from its initial orbit to its final (target) orbit which,
along with the initial conditions of the problem, gives the initial and final positions in
space through which the interceptor must pass. The transfer orbit must then be found
which passes through the known initial and final positions. An iteration is required for
this calculation inasmuch as the transfer orbit which will yield the proper transfer time
is not yet known. The procedure begins by choosing some orbit which passes through the
initial and final position vectors and then the corresponding transfer time is computed
and compared with the real (desired) transfer time. If the computed transfer time is not
the same as the desired time, another orbit must be chosen and the time again computed
and compared. This process is repeated until the conic section which provides the true
rendezvous transfer orbit is found.

There are (at least) two methods which have been used for this iteration. The solu-
tion by use of Lambert's theorem was used by Battin (ref. 1) and Breakwell (ref. 2). How-
ever, iteration of the true anomaly, as was considered by Lascody (ref. 3), is more read-
ily visualized since it does not require such artificial devices as "'flattening'' the transfer
orbit used in geometrically describing the transfer problem deduced from the theorem of
Lambert (ref. 1). It is also possible to find definite regions within which the true anomaly
must be chosen and therefore shorten computational (convergence) time to the extent that
a direct search routine may be used in the iteration; this routine does not involve the
derivatives necessary in the method of iteration as presented in reference 3.

In programing this problem, an effort has been made to provide a sufficiently gen-
eral program with a minimum amount of difficulty in reading input and printing output
information for the particular problem. For instance, problem input information may be
provided in two fundamentally different ways: (1) as Keplerian data (eccentricity, semi-
major axis, longitude of ascending node, etc.) and (2) as relative coordinate input refer-
enced to rectangular coordinate axes fixed with the target vehicle.



SYMBOLS

Unless otherwise noted all quantities are nondimensional. The nondimensional
forms are derived as follows:

Dimensional length
Semi-major axis of target orbit, ag

Nondimensional length =

Dimensional velocity
Mean circular velocity of target, VCT

Nondimensional velocity =

Target orbital period, P
27

Nondimensional angular rate = (Dimensional angular rate) X

Dimensional time

Nondimensional time =
m Target orbital period, PT

a semi-major axis of orbit

a5 element of transformation matrix, x,y,z to X,Y,Z
bij element of transformation matrix, x',y',z' to X,Y,Z
c chord joining Py to Ps

e eccentricity of orbit

E eccentric anomaly of vehicle in orbit

F functional relationship

Fl’FZ equivalent eccentric anomalies for hyperbolic orbit

h increment for iteration

H angular momentum

i inclination of orbital plane to target orbit plane

E,Aj,l; unit vectors along x,y,z; x",y",z" axes as indicated
I',f',lz' unit vectors along x',y',z' axes

f,3 ,ﬁ unit vectors along X,Y,Z axes



M mean anomaly

P semi-latus rectum

P, target orbital period, 27 T seconds

T radial distance to target

i-f(X),i'f(Y),i'f(Z) velocity components after final impulse

t time

t o time at observation of input

t; time of initial impulse

tf time of final impulse

Aty wait time before initial impulse, t; - t;

At interceptor transfer time, t; - t;

Tl,T2 computed times from periapse when the interceptor is at Py and Py in
transfer orbit

AT computed transfer time, T2 - Tl’ for comparison

Vv speed

Ver mean circular speed of target orbit, V;’%, ft/sec

V(X),V(Y),V(Z) velocity components along X,Y,Z coordinate axes
AV(X),AV(Y),AV(Z) velocity increment components

AV;,AV; initial velocity impulse; final velocity impulse

AV total velocity impulse

X,¥,Z coordinates fixed to interceptor initial orbit (inertial)
xy',z' coordinates fixed to interceptor transfer orbit (inertial)
x",y",z2" coordinates fixed to target vehicle (rotating)



e

X,Y,Z coordinates fixed to target orbit (inertial)

o,0,8 auxiliary quantities

v constant determining hyperbolic or elliptic computation

Ab transfer angle

0 true anomaly of interceptor in transfer orbit

66 increment of 64

ot increment in transfer time

oty increment in wait time

ov increment in true anomaly of interceptor in initial orbit

n gravitational constant, ft3/sec2

v true anomaly of interceptor in initial orbit

£ radial distance to interceptor in initial orbit

éi(x),éi(y) ,éi(z) velocity components of interceptor immediately before initial impulse
p radial distance to interceptor in target orbit
o(x"),0(y"),o(z") velocity components of interceptor in transfer orbit
0] true anomaly of target

Y auxiliary angle

w longitude of periapsis measured from node in plane in question
Q longitude of ascending node measured in target plane
Subscripts:

c circular orbits

f final time t=t;

i initial time t = ti unless specified differently

I initial interceptor orbit



k arbitrary index

o observation time t =t/

P parabolic orbit

T target orbit

w wait time

1,2 used to distinguish between the two terminal vectors in transfer orbit
iterations

1,2,3 used to indicate vector components along indicated Cartesian coordinates

1,2,3,4 indicates velocity components immediately before and after initial (1,2) and

final (3,4) impulses

X,Y,Z used fo indicate vector components along X,Y,Z coordinate axes

Nonsubscripted Keplerian orbital parameters refer to the transfer orbit. Dots over
symbols denote derivatives with respect to time; a caret (*) over a symbol denotes

vector quantities.

DISCUSSION OF ANALYSIS

The coordinate systems are chosen with the target orbit plane as the reference
plane, the periapsis of the target defining the reference position vector in space. Fig-
ure 1 is presented to emphasize the
, roiine frase of derget parameters involved in describing
/—' the target orbit and the target vehi-
L cle. The target vehicle radius is
’ denoted by r and its true anom-
aly by ¢. Input is given to define
the geometry of the target orbit
er, ap and the true anomaly of
the target vehicle ¢, at time
t =t,. The coordinate system
X, Y,and Z is defined with X
piercing the target orbit periapse,
Z pointing along the positive rota-
tion vector of the target, and Y
Figure 1.- Target satellite orbit and associated quantities. completing a right-handed triad.

Gravitational
center

Target satellite
periapse .




Unless otherwise noted, the quantities in this study are all nondimensional for gen-
erality. This condition allows the deletion of two parameters pu, and aq from the per-
tinent equations. The semi-major axis ap is not needed when dimensionless quantities
are considered inasmuch as it is used for the normalizing and is only necessary when
certain dimensional information is required. Neither is the central-body gravitational
constant pu required for dimensionless studies but must be used if the times are
required to be dimensional (minutes, days).

The parameters required to describe the initial interceptor plane are shown in fig-
ure 2. These parameters are the usual Keplerian elements describing the initial plane
and the periapse position of the interceptor orbit QI, Wi, iI and the geometrical ele-
ments of the interceptor ellipse e, 2 The position vector of the interceptor in the
initial interceptor orbit is given
by the magnitude ¢ and the true TZ
anomaly v. The coordinates | Initil Interceptor
X, y,and z are also defined P ! ,/f_\\
in this system; x being
directed through the periapse,
z perpendicular to the orbital
plane (see fig. 2), and y com-
pleting a right-handed triad.

It is not necessary to
specify the six parameters for
the interceptor position in the

Keplerian form (QI, wy, iy,

e, ap, and v_.\ as the program

o)

provides an alternate form for \z
this input. The position and Plane of inferceptor
. . ' transfer orbit
velocity (X'(')’ y'(.')’ Z'(;’ x'(_')’ y'(')’ o=t / ‘< Interceptor initial
: . O

and z'o') of the interceptor rela- arbit plane

tive to the target at time t=tg
may be used in place of the Target orbit plone
Keplerian parameters. (See

fig. 5.) A derivation of the rela-
tionship between these param-

eters is given in appendix A.
Periapse of interceptor

The transfer orbit plane is transfer orbit

specified entirely by the geom-
etry of the initial and final posi-
tion vectors of the interceptor.

Figure 3.- Interceptor transfer orbit and associated quantities.



(See fig. 3.) The time for the initial impulse is denoted by t =t; and the final impulse

t = t;. The quantities ¢ and v,

are the true anomalies of the target and interceptor

at some time t=t, but the initial impulse may not come until some time later t;;

thus, another quantity is introduced, the wait time At, where Aty =t; -t,. It is then
clear that the transfer time At is At =ty - t;. The initial position vector £; is deter-
mined by the orbital quantities apd the wait time e, ap, O iI, Wp Voo and Aty

4

Inferceptor initial
/ orbit
(e

Target orbit
>\ s plane

=Y

Interceptor initial
orbit periapse

Target

, .y o
% 1t Interceptor initial orbit

ascending node

Figure 4.- Quantities required for Keplerian input to program (DATAS = 1.0).

AZ(K)

(N)

Figure 5.- Quantities required for relative coordinate input to program
(DATAS = 2.0).

or the relative coordinate data

XU, v9, 2z, X8, ¥§, 2y, and
Aty. To determine the final posi-
tion vector f'f, the position vec-
tor of the target at t = tf, the
quantities er; Do and Aty + At
are needed. The total time from
ty, to te is the sum of the wait
time and the transfer time.

The initial position vector
g, is determined by first com-
puting the eccentric anomaly EI o
at t= t0 of the interceptor in
its initial orbit from the equation
Eto _ 1 - &

VO
tan—z—— 1+e1tanT (1)

The mean anomaly at t=t; is
found directly from Kepler's
equation as

and at t=t; the mean anomaly
will be MIi where

1
Mp; = Mg, + zn\f;I—s Aty  (3)

The eccentric anomaly EIi at
t =t; is found from iteration of
the Kepler equation as described
in reference 5.
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My =Ep +€; sin Eg, (4)

After obtaining Ep from equation (4), the true anomaly »; may be found from

E..
i 1+e Ti
\ll—etan_z

After the true anomaly of the interceptor v; preceding the first impulse is found,

the radius vector magnitude is obtained from the well-known solution

ag(l - ef2)

= =4 5
& 1+eIcosvi )
The rates may be easily computed from the relations
a1l - e2
Gy
and
. er sin v, '
’éi = I__12 (7)
ar(1 - ef?)

The initial vector Zi written in the x,y,z coordinate system (fig. 2) becomes
& = gI(cos vl + sin vij> (8)

The final position vector is determined from the initial conditions e} and ¢,
along with the elapsed time At + At in the same manner as the initial position vector.
These computations are shown in appendix B. By repeating these steps for the target
vehicle at t = tf the true anomaly ¢ may be obtained and may be used to find the
final radius vector written in the X,Y,Z system as

Ty = rf(cos ¢fi + sin qbfj) (9
where
1-e.2
rf = _—T.. (10)
1+ eq COS ¢y
9



Also

y \,1 - en2
s = -—;‘ (11)
(1)
emn sin ¢
i = _T___zf (12)
Vl - eT
The interceptor velocity immediately preceding the initial impulse at t=1t; is

obtained from

-~

£ = (51 cos v; - £;7; sin vi>i + (gl sin v; + ;v; cos vi>] (13)

1

and after the final impulse the interceptor velocity must be the same as that of the target

or
f'f = (if cos ¢y - rféf sin qbf)f + (i'f sin ¢p + rfcbf cos qf)f)j (14)

The transfer orbital plane and some of the properties of the transfer orbit are found

by noting that the interceptor must leave vector Ei at time 1:i and arrive at vector f‘f

at time tf. Since Ei and f'f are known, the transfer plane properties and the transfer

angle Ag may be determined.

In equations (8) and (9), éi was specified in terms of its components in the x,y,z
coordinate system whereas f'f was specified in the X,Y,Z system. In order to manip-
ulate with these vectors, their components must be referenced to the same coordinate
system. The target coordinate system X,Y,Z is used here so that the vector éi must
be transformed. This transformation can be accomplished by the common Euler angle
matrix. The elements of this matrix are dependent upon the angles QI, Wy, and iI and
are given in appendix B. The matrix will here be simply noted as [aij]' Then ?;i is
written with components in X,Y,Z as

or letting
E(LI.R) = (0T + £(0)F + £, (2K (16)

10



where £(X), &(Y), gi(z) are functions of &;, v;, w;, 9, and i; and are found

from equation (15). These relations are written out in appendix B (eqs. (B21)).

With both & and T; inthe X,Y,Z coordinate system, the transfer angle Af
and the transfer-orbit plane inclination i may be derived from the vector identities

éi . f'f = girf cos Af

-~

51 Ty = £ Ty sin Agk'

where

A~

k' = -sin i sin ¢ff + sin i cos qbf3 + cos iK
A complete derivation of A9 and i is given in appendix B.

The velocity components of equation (13) may also be transformed to the X,Y,Z
system

é 1,i,R) = [1;]5 ()

which gives expressions for éi(X), éi(Y), and éi(Z) as shown in appendix B (eqs. (B44)).

The problem now becomes one of finding an arc of a conic section which will pass
through the initial vector éi and the final vector f'f and which also has the property
that a body traversing this arc will do so in the desired transfer time At. For future
convenience, the following convention is defined: Let Py be the minimum of re and
gi and Py the maximum; then the transfer orbit must be the conic section passing
through the radii P4 and P9, separated by an angle A4, in the time At.

If an angle 04 of periapse to Py is guessed, the eccentricity for the conic section
which has radii Py and Py separated by A¢ may be found from

- p
P1=11¢ cos 64
(18a)
- P
P2 1+ e cos 9
where
92 = 91 + Ag (18Db)
11



and
p= a(l - e2) (18¢)

from which p is eliminated to find

Py - Py
€= cos 0 7] (19)
Py COS Oy = Py COS Oy

The eccentric anomalies may also be computed from

and the mean anomalies from

M=E - e sin E

The time of transfer for this particular choice of 91 is found from the mean anomalies

as

AT = E AM
27

The semi-major axis a is determined from e and §; or 6y in equation (18c).

The computed transfer time AT will not, in general, correspond to the desired
transfer time At; therefore, it will be necessary to assume a new value for 91 and
continue with this process until the desired agreement is obtained.

It is possible to find certain regions from which to choose 61 and thereby shorten
the iteration considerably. It is easy to see in which conic section the transfer orbit must
be by computing the time required to transfer by a parabolic orbit. This time may be
determined without iteration by setting e = 1.0 and following the procedure outlined in
appendix B. If this parabolic time ATp is less than the desired transfer time At, the
orbit must be elliptic (e < 1.0) whereas if the parabolic time ATp is greater than the
time At, the orbit must be hyperbolic (e > 1.0). The procedure is to find the type of
orbit, hyperbolic or elliptic, and then set 84 equal to the parabolic anomaly ep plus or
minus some increment 691 so that 01 lies in the hyperbolic or elliptic region, which-
ever is appropriate. The size of this increment 691 is important in convergence of the
iteration. It is governed by two other limiting values, one each for the elliptic and hyper-
bolic regions. Then a straightforward incrementation process is used directly until the
correct value of 4 1 is found. A complete description of this process is found in
appendix B.

12
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After the properties e, a, 01, A0, p, 2, w,and i of the transfer orbit are
found, the next step is to compute the velocity increments required for the rendezvous.
The velocities before the initial impulse and after the final impulse are given in equa-
tions (17) and (14). The velocities after the initial impulse and before the final impulse
are described in the transfer orbit. If E', 5', and k' are the unit vectors along the
x',y',2' coordinate axes previously defined in the transfer orbit system, these velocities
are written as

ﬁi = (ﬁi cos g; - p;6; sin ei)f' + (;5.1 sin 0; + p;6; cos Gi)f'

5f = (pf cos 0; - p éf sin ef)i' + <bf sin 6, + pféf cos ef)i'
These velocities are then transformed to the X,Y,Z system for ease of manipulation.
This transformation is done by a matrix [bij] identical functionally to [aijj but with
the transfer orbit angular parameters ©, w,and i replacing the parameters for the

interceptor initial orbit QI, wps and iI. After these transformations the velocity incre-
ments are easily found from

and the total velocity increment required becomes

AV = \J]A\?ilz + [A{’flz

A thorough discussion of this method and the pertinent mathematics of the problem
is found in appendix B.

COMPUTER INPUT AND OUTPUT

The problem was programed in the FORTRAN IV language for the IBM 7094 com-
puter installation at Langley Research Center. Certain options were incorporated in the
input of the program and are described. A more thorough description of the entire pro-
gram is found in appendix C. It was felt that the present writeup is sufficient for most
uses and if changes are desired, they are easily incorporated through the FORTRAN IV
language.

13



The program automatically increments the anomaly v, of the interceptor at
t = ty, the wait time in orbit Aty, and the transfer time At. The incrementation begins
with At or Aty depending on the value of the option control variable GUIDE in the
input. The second parameter incremented is Aty or At, whichever is not incremented
first, and the third incrementation is v,
An option is also available for using the input and output times At and Aty as
dimensional quantities. The input quantity OPTION determines whether the quantities
At and Aty are dimensionless or dimensioned as minutes or as days. Because of the
nondimensional parameters used in the program, the input u and ap may be any con-
venient values as long as the time is dimensionless and Pp and VCT are not desired;
otherwise, p and ap must be properly dimensioned.

The input quantity DATAS determines whether the initial interceptor orbit data are
Keplerian or relative Cartesian.

Other necessary input quantities are h, the increment constant for the 91 itera-
tion (in the examples solved a value of 3 was used), &t and &ty, the transfer and wait
time incrementation for the time grid. Also, input is the quantity r,,;, which is the
minimum radius the interceptor may take as it travels the transfer arc. This value does
not affect the computations in any way; however, if the radial distance of the transfer arc
falls below the value r,;,,, an asterisk is printed out at the right-hand side of the output

sheet.

The variables output in the program described herein were those which were con-
sidered to be of general use. The output is printed as shown in tables I, II, and IIl which
are output data for the three examples following this discussion. The first block of data
is a reprint of the input where the following correlation between symbols may be observed:

Symbol Corresponding value
ET eq In the case that the input is in the form of relative

i; :i coordinate data, these Keplerian quantities for the initial
gnm“ z: interceptor orbit are computed from the relative coordinate

s i data as has been explained. An example of this printout is
Eumcﬁ f: (irst) shown in table II where a fourth row of variables is noted and
o o (ast) X0, YO, and ZO correspondto Xp, Vg, and zg and

o r (fﬁl ) XODT, YODT, and ZODT correspond to Xp, ¥, and Zg.
Xgﬁl X;ai‘;/) sec) After this output which records the data for the terminal
DTTF at (last) orbits, the data are computed for the rendezvous problem and
E::IF i;“:v “&:3 the following description of the printout nomenclature should
i Tmin be noted:

14



Symbol Corresponding value
NUO Vo
DELTTT At
DELTTW Aty
PHIF bg
NUI Vi
E e
A a
I
THI 05
DELTTH AQ
RHOM Pmin ) )
DV1X Component of AV, along 1
DV1Y Component of AV, along J
DV1Z Component of AYi along E(
DV2X Component of AV along I
DV2Y Component of AV, along J
DV2Z Component of Ayf along K
DELV1 Magnitude of AV,
DELV2 Magnitude of AAVf
DELV Magnitude of AV

EXAMPLES

Example 1 — Interplanetary Transfer Between Massless Planets

To compute velocity increments required for interplanetary trajectories the input
for the planet ephemeris is needed. This input can be found from reference 6. As an
example, consider a trip from Earth to Mars which is to be accomplished by a two-impulse
orbit. As the observation time tg, January 4, 1964 (Julian date, 243-8398.5) is selected.
From the 1964 ephemeris tables (pp. 18, 50, 172, 176), data for this problem are found
which are referenced to the ecliptic plane. From the geometry of the ecliptic coordinate
system (see refs. 1 and 2) and the definitions presented here, the following program input
is determined:

e = 0.093372 v, = 0.37°

ap = T.4737 X 1011 Q; = 253.88°

15



—_ o] _ O
¢, = 324.4 wp = 233.02
ep = 0.0167242 ip = 1.850°

ay = 0.656301

In order to be notified in the output whether the transfer arc is less than 0.6 astro-
nomical units, let T in = 0.6aI. Also let

u = 4.679 x 1021 £t3/sec2

h=3.0

then

r ip = 0-393781

Since Yo is not to be incremented (because it is fixed by the physics of the solar
system), let v, (first), v, (last) be v, as shown and the increment 6v, = 0. Let it be
desirable to collect data in increments of 20 days with transfer times from 160 to 260 days
and waiting times of 0 to 40 days, and then use

At(first) = 160.0 At(last) = 260.0 &t = 20.0

At (first) = 0.0 At (last) = 40.0 5t = 20.0

If the data are to be analyzed with At as the primary independent variable and Aty, as
the parameter, At is incremented first. Therefore, set GUIDE at 2.0. The times are
to be input and output in days so that OPTION is 3.0, and since Keplerian input is used,
set DATAS as 1.0. Some output data are given in table I with time in days and all other
quantities except p, ar, PT’ and VCT are nondimensional.

Example 2 — Earth-Orbit Rendezvous

There are many approximate schemes which have been derived and investigated for
determining the velocity increments required to rendezvous between similar orbits. Such
investigations have been mainly concerned with circular orbits or first-order representa-
tions of elliptic orbits (near circular orbits). The simplest case of rendezvous with a
circular target orbit (as done by Clohessy and Wiltshire, ref. 7) gives a closed-form solu-
tion to the linearized equations of motion for the velocity increment required to rendezvous
in a given amount of time. This linearized solution is accurate for the terminal phases of
a general rendezvous problem but the accuracy is soon lost for large initial interceptor-
target ranges. It should be noticed that even in the docking phase, this solution may not be

16




too accurate if the target orbit is highly eccentric. Further attempts to increase the
applicability of the Clohessy-Wiltshire results usually require an iteration scheme
(Anthony and Sasaki, ref. 8) or some other process to get a solution of the velocity incre-
ment required to rendezvous.

It is noted that the solution of the exact equations presented herein is not too
involved once a computer program is available, and, of course, offers the advantage of
giving correct results for both large eccentricities and inclinations.

As an example of the use of this program for earth-orbit rendezvous, assume that
the following elements are used for the target orbit:

ep = 0.0234

= 7
ap = 2.248 X 10* ft

Also let
(j)o = 0.0°
T oin = 0.954
p = 1.408 x 1016 £t3 /gec2
h=3.0
The interceptor position and velocity are given in relative coordinates:
Xy = -0.01692 X} = -0.00376
¥ = 0.0376 3'7'6 = 0.1526

z}! = 0.0 21 = 0.0

Note that e, 2, Vo, iI, ‘QI’ and wy are computed from these relations. Let the time
be input and output in minutes:

At(first) = 2.0  At(last) = 40.0 6t = 10.0

Atw(first) = 0.0 Atw(last) = 30.0 ot = 10.0

If a plot of Aty, as abscissa and At as a constant parameter is desired, set
GUIDE at 1.0. Since O%‘p;ﬁt time is in minutes, OPTION is 2.0, and since relative coor-

dinate data are used, set DATAS at 2.0,

The output of the computer program for this input is given in table II.
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Example 3 — Transfer Orbits

The problem of orbital transfer between two arbitrary elliptic orbits may also be
accomplished by this computational procedure. The use of this method in orbital transfer
problems is indicated in this example where the minimum two-impulse transfer orbit is
desired between two fixed terminal orbits. The transfer orbit requiring minimum velocity
increment may be found by proper interpretation of the data and the use of a plotter. The
program as presented here does not have a gradient or other optimization scheme to find
the minimum velocity transfer directly. However, an example is shown of one way of
obtaining the optimum (two-impulse) orbital transfer.

For the terminal orbits the following input data are used:
ep = 0.5 ap=1.0 (arbitrary)

Q= 900 ey = 0.2

. — O -
iy = 30 ap = 0.9
_ _90°
wp = 90
Also let
T in = 0.45
h=3.0

i =1.0 (arbitrary)

The true anomaly v, of the interceptor at t =t is chosen in the following range:

vo(first) = 0.0
v, (last) = 350°

oV, = 10°

which is incremented automatically by the program. To obtain all the possible transfer
arcs, it is necessary to increment either Aty or v, but not both. As v, is chosen
to be the incremented parameter, the wait time is set equal to zero.

The true anomaly ¢ o is chosen, and when the transfer time At is varied, a set
of curves for the variation of AV with At with v, as the parameter are obtained for
a specified value of ¢ o’ The program does not increment ¢ o automatically as it does
for At, Aty, and v,. However, it always returns to read the first data card of a new
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set after running through one complete set of data. If there are no more sets of data, the
computation ends; if there is another complete data set, it starts anew. To increment

¢ g it is necessary to reproduce all data cards for every new value of ¢ o and to place
these one behind the other. (See appendix C.)

As set out above, each complete data set gives one complete set of curves for a
given ¢, with v, as the parameter. (See sketch 1.)

As an aid, sketch 1 has been drawn
with ¢ g as the abscissa value rather
than At and is possible because of the

functional relation between At and ¢;
or AV

b = B, + F(AL)

since Aty =0.

The transfer time At is read in

¢, = Constant

as follows:
At(first) = 0.09 °t
At(last) = 1,008 Sketch 1
5t = 0.009

These quantities are dimensionless ratios to the target orbit period. The waiting fime is
input as

Aty (first) = At (last) = oty = 0

Some sample computer output is shown in table III for ¢o = 0.0°,

-From a Beckman automatic plotter, the characteristics of one of the lower AV
transfer orbits are found to be

v, = 550 AQ = 132.47°
¢¢ = 193.58° i=-22.88°
At = 0.64 Ppin = 0-18
e = 0.4361 AV; = 0.0808
a = 1.086 AV, = 0.2563
6; = 71.96° AV = 0.3371
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CONCLUDING REMARKS

This report presents a technique for solving three-dimensional orbital problems in
a straightforward manner using the exact solutions or Kepler solutions to the equations
of motion. Basically the method developed is an iteration on the Kepler equation using the
true anomaly as the iteration parameter and the mean anomaly or transfer time compared
with a prespecified transfer time as the stopping criteria. To aid in the choice of the true
anomaly to begin the iteration, certain boundaries are devised within which the solution
must lie. The iteration is performed directly on the Kepler equations and no derivatives
are necessary. This method works very well and the computation time compares favorably
with other methods, the typical run times being about 0.003 minute per transfer. The
generality of the program format presented allows rapid computations, with simple engi-
neering input parameters, of interplanetary rendezvous or near-planet rendezvous cases.
For instance the program has proven useful in studies concerning fuel requirements for
abort missions during lunar letdown of the lunar excursion module and command module.

Langley Research Center,

National Aeronautics and Space Administration,
Langley Station, Hampton, Va., February 14, 1966.
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APPENDIX A

OBTAINING KEPLERIAN ORBITAL ELEMENTS FROM
RELATIVE COORDINATE DATA

In many problems concerning rendezvous, the initial conditions are given in terms
of the relative position and velocity of the interceptor with respect to the target. If the
Keplerian equations are used for the exact solution of the motion, the Keplerian elements
in terms of the relative coordinates must be obtained. Let XY 520 be the relative posi-
tion vector (see fig. 5) of the interceptor with respect to the x" y'",z'" coordinate system
attached to the target; x" points away from the gravitational center, y" is in the posi-
tive direction of angular motion, and z" is along Z normal tothe x"y" plane.

Suppose that the following are given in dimensionless form: ers 9o X Yo Zg»

5{'('), yy, and é:'('). It is desired to find the Keplerian constants ey, aj, v, 95, g,

and iI‘ By using the formal application of vector analysis, let i,j,k be unit vectors

along x', y'",and =z'", and obtain the radius vector
E=(r+xMNi+y"]+2zk (A1)

for the interceptor, and since the rotational rate of the (x",y",z") coordinate system is
¢k, the velocity is
E=@+xV+yi+2'k+ pkxE (A2)
where
kxE=(r+x-yi (A3)

The velocity of the interceptor becomes:

-
~

Vei=@+x - dyi+ G+ dlr+x)j+ 2k (A4)
The fundamental relations of orbital mechanics show that

~\

pT =1 - eT2
e PT
1+eqcos ¢
: P (A5)
= e sin ¢
Pt
o=z
r2 J
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From these expressions the velocity of the interceptor in its initial orbit can be written
in terms of the desired quantities along the axes of the moving x",y",z"" coordinate
system. Quantities considered here are at the time t =0 and are subscripted accord-
ingly. The velocity components at t =t, alongthe x", y",and z" axes will be
denoted by Vo1 Voo and Vio3s respectively; thus, the interceptor velocity becomes

V=V i+ V o+ V. gk (A6)

By using equations (A4), (A5), and (A6), the components are written in terms of known

quantities as

~
T L TR
Vp_T o o ro2
ot 1 Vﬁ
VOZ = Yo + (ro + X(;)r—oz (A7)
Vo3 = 25 _J

The energy equation for the interceptor at time t, may be written (nondimensionally) as

2_2 1
Vol - 2 =2 A8
ot £ =ar (A8)
where £, V, are magnitudes of the defined vectors £, V attime t o OF
— A 2 V Y; 2 \AJ 2
to = o+ x5)% + (737 + (23) (a9)
= 2 2
V, = \[Vol + V022 + Vg (A10)

By using equation (A8), solve for the semi-major axis ap

ar = %0 (Al1)

2 - ‘EoVo2

To determine the eccentricity of the initial interceptor orbit, write the angular

momentum at time t of the interceptor,

H =£ xV, (A12)
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where £ and V  are dimensionless quantities. If

performing the indicated operations yields

Hy1 =Y6V03 ~ 26V 02

Hyg=24Vo1 = (To + Xo)Vo3 (A13)

Hyg = (ro + x'c'))voz - ¥oVo1 J

and

(0]

H, = \1(H01)2 + (Hyg)? + (Hyg)2 (A14)

In the nondimensional form, the angular momentum and semi-latus rectum may easily be

shown to be related as

py =H 2 (A15)

and therefore the well-known relationship pp = aI(l - e12) gives with equation (A15):

op
)

2

Sketch 2

AHOZ
e =11 - —
1 ay

(A16)
Sketch 2 and figure 5 are given as aids in
describing how the angular measures iI, QI’
and wyp are determined. The unit vector N
directed along the line of nodes of the initial
interceptor orbit and pointing toward the
ascending node is defined by the relation

kxH = IHO sin iIlN (A17)
The inclination iI is also described by the
relation
k.H =H,cos i (A18)
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and equation (A18) gives

H
ir = cos1 L: (0<ip<m)  (A19)

From figure 5, it is geometrically evident that
f=1cos ¢0-fs‘1n ¢, (A20)
and also from the definition of the angle QI

cos Qp=1'N (A21)

~

k sin 9 = IxN (A22)

and expanding the vector manipulation of equation (A17) gives

~ H ~ H ~
N=_—°b _j.__"02 7] (A23)
H, sin iy HO sin iy
From the well-known relationship
£ = P
o 14+ ey Cos vV
obtain
p
cos v =1 -L-1 (A24)
e
I>o
A basic orbital relationship which is of value here is
sin v = ye_? £, (A25)
and, as g o 18 the component of {/_0 along é o’
£ =V - & (A26)
0o~ "o ¢
0
In order to find the angle W note that another geometric relation is
EO -N = £, cos (wI + VO) (A27)
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and also
- . fi
NX ¢ =g, sin (wI + VO)H— (A28)
o
Note also that v may be found from equations (A24) and (A25) as

. -1fsin v,
VO = tan (m) (0 = VO < Z'IT) (A29)

From equations (A20), (A21), and (A23),

H02 cos ¢, +H sin <p0

cos ;= - _ M- (A30)
I Ho sin iy
and the proper vector manipulations with equations (A20), (A22), and (A23) yield
H_ 4 cos - H_o sin
sin g = —°1 %o _ o2 %o (A31)
H, sin iy
From equations (A30) and (A31),
_1/sin
Qp = tan™H{—L (0=ep<2n (a32)
CcOS QI

Similarly, performing the indicated vector manipulations on equations (A27) and (A28)
leads to the scalar equations ‘

E02Hol - £01H02

cos (wy+ V)= (A33)
1 o) in i
( ) 3 oHo sin i
. £03
Sin (wI + Vo) = — (A34)
o Sin ip
If the inclination iI is zero, QI is arbitrary; thus, let
Qp = 0 (A35)
Also, equations (A27) and (A28) yield
£ ,cos ¢ -£& 58in ¢
cos (wI + Vo) = 2ot o “o2 2 (A36)

%o
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£y 8in ¢ + £ o cOS gbo'

sin (wI + VO) = (A37)
€0
Whether i; is zero or not, equations (A33), (A34), or (A36), (A37) give
sin (wy + v
wp+ v = tan-1 ——M (A38)
cos (wf + Vo)
and equation (A38) with equation (A29) give the desired expression
wy = (wI + 1/0) -V, (A39)

Equations (A11), (A16), (A19), (A29), (A32), and (A39) give the information necessary
to compute the desired Keplerian elements.
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MATHEMATICAL DESCRIPTION OF PROBLEM
The following description is a logical flow of the problem as it is programed.

Description of Initial and Final Properties

If the initial and terminal states of an orbit referred to two other elliptic orbits,
namely, the interceptor initial orbit and the target orbit, and also the time required to
transfer from orbit to orbit are known, the velocity increments required to establish the
transfer orbit and the elements of this transfer orbit may be computed. The initial and
terminal states may be found from the input as follows. Suppose that the following data
are given: u, at, ep, ¢qo, €1, a1, wr, £, i, Vg, Aty, and At. Recall that all
gquantities except u and ap are dimensionless.

Compute the semi-latus rectum of the initial interceptor orbit and the target orbit
from

pp = ax(l - 812> (B1)

pT =1 - eT2 (B2)

The target orbital period in seconds is

"aT3

The eccentric anomaly of the target at t = to is found from er and b6 by the

defined relationship
E ¢
tan —XO \,1'_6 tan -2
2 l+e 2
and then functionally as

Eqo = F(eT’(po) (B4)

For computational purposes, define the function F(a,B) as

F(a,p) = 207 + 2 tan~1 \fu v tan 8
1+« 2

) (B5a)
15t and 4th quadrants
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where
a=e€
T (B5b)
B =9,
and
n= Integer<w> (B5c)
T /lowest integer value
vy=1.0 (< 1.0)
(B5d)
y=-1.0 (o> 1.0)

Note that allowance is made here for the possibility of hyperbolic orbits because F(a,pB)
will also be used for transfer orbits.

The mean anomaly of the target orbit at t =ty is found directly from Kepler's

equation

My, = Eq, - €p sin Eq (B6)

To

The mean anomaly of the target at the final time t = tf is

Moy = Mg, + 211(At + Atw) (B7)

The eccentric anomaly of the target at t = tf is required so that the true anomaly
at t= 1:f may ultimately be obtained. It is possible to solve for the eccentric anomaly by
use of an expansion in terms of the infinite Bessels series (see ref. 9) but it was found to
be more rapid to iterate the Kepler equation by using the method of differential correction
as shown in reference 5 or 9. The steps in the iteration procedure are as follows:

(1) Estimate the initial value E; from truncated series solution of the Kepler

equation

E; =M, +e sin M, + % e2 sin 2M (Mo = MTf; €= eT) (B8)

(2) Compute the following sequence:
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i=1

M =E - TsinEi=

AI\/L1 MTf—M

AE. —AM/I-eTcosE i=i+1
1—E +AE

1¢E

Eiy1 =B :]

Compare Ei+1: E; —->{

which gives after the completed iteration:
Eps =Ei (B9)

At t=1t; the eccentric anomaly of the interceptor EIi is obtained from Vor e
and AtW in the same manner as ETf‘ The expressions are rewritten here for com-
pleteness with eccentric anomaly of interceptor at t=t, as

Efo = F(eI,Vo)

where F(eI,v 0) is the function previously defined (eq. (B5)) with « = e; and g=v..
Also

M

Io = Eo - €1 Sin (EIO>

At t=t; the interceptor mean anomaly is found from

’1
M. = My + 27— At
Ii Io aI3 w

The iteration steps are shown in equations (B8) and (B9) with the following
replacements: ep by ep MTf by Mﬁ; E'I‘f by EIi‘

With this information the true anomalies at the initial and final times of the intercep-
tor in its initial orbit and the target in ifs orbit may be computed. The routine given by
equations (B4) and (B5) will give these values if -a is replaced by the corresponding e.
Thus, the true anomaly of the interceptor in its initial orbitat t=t; is, ¢ and B in
F being replaced by the parameters -ey and EIi

v;=F ('eI’EIi) (B10)

and the target in its plane at t = 1:f is
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¢¢ = F(-eqp,Eqy)

With these quantities it is possible to compute the properties £p> g'i, Vi

(B11)

and ‘i)f which will be required for computation of the velocity increments. The initial

radius vector is

Pr

1 1+eIcosvi

The rate of change of true anomaly at t=t; is

. S |
Vi = \/EI 5
(1)
Also the rate of change of the radial distance is
: _C1sin’i
§=—"2—
VPt
For the final time t = tf, the properties of the target orbit are

Pp
I‘f =1—-—
+ eq COS ¢

-

I‘f2

em sin
;. - o Sin ¢

.f
\Pr

(B12)

(B13)

(B14)

(B15)

(B16)

(B17)

If an interceptor is to transfer (or rendezvous) from one orbit to another, the two
orbits being determined by this information, it must begin at t =t; in the initial orbit,
change velocity (instantaneously) to the transfer orbit at t = tj, and travel until t = tf in
the transfer orbit. Then it instantaneously changes its velocity to satisfy the terminal or
target orbit properties. Enough information is now available to compute the initial and
final terminal velocities but further discussion of this procedure will be delayed until the

initial and final transfer orbit properties have been computed.

Computation of Transfer Orbit Properties

Information giving initial and final terminal vectors in space gi, ff is available,
and it is now necessary to determine the transfer conic which connects these two vectors
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in the specified transfer time At. Reference 3 shows that the solution to this problem

is unique. However, because of the implicit nature of the Kepler problem, it is necessary
to perform an iteration in order to obtain the solution. The method used here is a
straightforward iteration of the Keplerian orbital equations as was also described in
reference 3.

The plane of the transfer orbit is specified by the plane containing the initial and
final position vectors and the center of attraction. The transfer plane inclination i and
the transfer angle A@ are determined with the aid of vector representation. Let i,
J,and K be unit vectors along X, Y,and Z axes;let i, j, and & be unit vectors
along x, y,and z axes as shown in figures 1, 2, and 3. Let [all] be the x to X
transformation matrix so that a general vector A transforms as:

A(IJK) = [aij]A(l]k)
The initial vector may be written as
fi = gi(cos vii + sin Vif> (B18)

By letting ‘Eil"gi2’£i3 be the components of gi along the X)Y,Z axes, the following
relations are obtained:

£ =g i+ g0 + 55K

ry = rf(cos ¢l + sin ¢>f3>

In order to examine the vectors in the I,J,K system, a transformation of components is
required; thus,

§5(LT,K) = 2] 4,(1iK) (B19)
where
€OS w; COS QI - cos iI sin QI sin wy - sin wy cos QI - cos iI sin QI cos wy sin QI sin i
[ 11} = 1C0S w sin QI + cos 1I cos QI sin wy - sin wy sin QI + cos 1I cos QI €os wy - cos ‘QI sin iI (BZO)
sin 1I sin wy sin 1I €os Wy cos iI

From equations (B18), (B19), and (B20),
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gil = Ei cos Qi cos (Vi + wI) - cos iI sin QI sin(vi + wl)jl

Eig = & |sin O cos(vi + wI) + €os ij cos & sin(l/i + wI):I

Eig= & sin iI sin(ui + wlﬂ

To determine Ag and i, note the vector identities:
gi . f'f = §;Ts COS Af
gi X f'f = g1 sin Agk'
Note that the unit vector k' along the z'-axis is written as
k"=IsinisinQ - Jsinicos Q +Kcosi

and since

Q+qa= ¢f
k' = - sin1i sin ¢>ff + sini cos qbfj + cos iK
From equations (B18), (B19), (B23), and (B24) find

£;1 COs op + giz sin or
&

cos Af =

&,
sin Af sin i = -3
i

£i3

tani= n
511 sin ¢f - giz cos qbf

Combining these equations and solving for i yields the following expression:

£i3
gll sin ¢f - 512 CcOS ¢f

i = arc tan

32
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and also
£.. cOS ¢ + £:9 Sin @
cos Ag = —11 £~ "2 £ (B26)
&
£.4 sin ¢p - £ig COS O
sin Ag = 11 f “i2 f (B27)
51 cos 1
sin A9 < <
Ag.= arc tan =——= (0sA9=27) (B28)
cos Ag
The nodal angle 2 may be expressed by
Q= qbf +7 @i>0)
(B29)
Q= ¢f (i<0)

An inherent symmetry in the equations exists so that it makes no difference in the itera-

tion whether the transfer from gi to f'f or f'f to gi is considered, and advantage of

this symmetry is taken by considering transfers only from the shortest of Ei, f'f to the

longest. Therefore, let p; be the minimum of §&;, ry and pg be the maximum of §&;,

rg. (B rp=2§&5, py=p2=p=rf= &)
The chord c¢ is given by

c= \lp12V+ p22 - 2p;pq COS AD (B30)

A geometric picture is shown in the following sketch:

Sketch 3.- The quantities p;, py, A0, and c.

By assuming a periapse angle of 64 in the transfer plane, an orbit between Py
and py can be determined as shown in the following sketch:

33



APPENDIX B

(—__——— Periapse

Sketch 4.- Transfer orbit for corresponding 61-

For each properly chosen angle 61> there is a conic section which passes through
P1:Py and an associated time of passage Tl’TZ' Hence, for a given 01> given trans-
fer time T2 -Ty is generated. In general, this time will not be the desired transfer
time At, and thus an iteration is necessary. The necessary calculations for the deter-
mination of the orbit by this method are now developed. Define

By eliminating p from the well-known expressions

- p
P1= 1% e cos 04
B32
p = .—_p— ( )
271 4+ecos 92
the unknown eccentricity of the transfer orbit is found from
Pg - P
e = 2 i (B33)
py cos 91 - Py COS 92
and the semilatus rectum
p= pl(l + € cos 91) (B34)
The semi-major axis is computed as
a=—2P (B35)
1-e2

All the orbital parameters may be fixed by choice of the periapse angle 61.

A distinctive value of 61 is the periapse angle ¢ _ for parabolic transfer from Py

to Pg and the associated parabolic transfer time ATp = T2 - Tl' This value of 01 is
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easily found since e = 1.0 for parabolic orbits. Letting 6y = Gp and using equa-

tion (B32) yields

pl(l + cos ep) = pz(l + COS 62) = pZE + cos(Ae + GPEI

or

(pl - py COS Ae)cos 0.+ (pz sin Ae)sin Gp =Py - Py

p

Then Gp is found by trigonometric identity

p_z—_p_1.>0
Cc

sin(ep + IP) =

where the angle ¢ is defined by
Pq - Pg COS Af

sin y = c
Py sin A9
cos Y = —

Y =tan” 1<M>

cos Y

Let

Po - P
o= Sin_1<2—c—1'>

and then note both values of ep in an interval of 27

=a—w

=0
p p‘minimum

0 =q-(@+y)

=0
p pImaximum

A geometrical description of y is shown in the following sketch:

(B36)

(B37a)
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Sketch 5.- Geometric interpretation of .

The semi-latus rectum corresponding to 0p is
Py = pl(l + COS 9p>

The parabolic transfer time is then found as follows: The time to travel from periapse
to Py is found in reference 10 and is

6 )
=1 31 a3 Py Lign R
Tpl_zﬂ pp <6tan 3 +2tan 5

and from periapse to Py is

9.+ Af 6+ Af
1.0, 3(1in3 P 1 P >
= — =t =t =
T2 =2, \Ipp (6 B R A
so the parabolic transfer time is

This value may be used to compare the desired time At of transfer and to deter-
mine whether the orbit is elliptic (At > ATp) or hyperbolic (At < ATp).

There are certain definite regions in which 01 must remain for a solution to exist.
These regions are found by use of equation (B33) and the positive sign of e and Py - Py
These equations imply

pq cos 91 > pg COS 92
which leads to sin(e1 + 1,(/) >0 or
- w > 91 > - ll/
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where ¥ is defined in equation (B37). It is seen that the lower limit for 0, is -y
for all cases. The angle ¢ is greater than -y as it is given by equation (B37). For
an arbitrary e, ep is replaced by 6, and equations (B37a) are written

6y = sin‘l(p—z—-—pl> -y (B39)

First quadrant

From equations (B39) and (B37), the following inequalities are obtained:

6, >80 (e <1)
1 Piminimum
(B40)

61 <9 (e >1)

Plminimum

It may also be shown that the true maximum value for 04 is less than 7 - v and
is the second parabolic solution

maximum Plmaximum

Hence, the following regions for choice of the iterative periapse angles 64 are
determined from these relations:

(DI At< ATp, then e > 1 (hyperbolic transfer) and -y < 6y < 9p
(2) It At > ATp, then e < 1 (elliptic transfer) and Gp <6y <m- 2(:,[/ + ep)

It At= ATp, then e =1 and the solutionis ¢, = 9p

A geometric interpretation may be given to these regions and an example is shown in
the following sketch:

~

Ag oy

-~ - 7 _w
- 8y T~
S \\ llmax Q’ dmin\
\\\» . \ L .
~ Elliptic \\/ , -
VTN
Region for "g; ™ ~.0 7/ Hyperbouc'
o~ o~ SN Regionfor 9

Sketch 6.- Regions of possible choice for the periapse 1.
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Elliptic transfer orbits.- In the case that At > ATp, the transfer orbit for rendezvous
must be elliptic and hence 6 _ < 61 <m-2¢ - 8 _. The iteration scheme used here is a
straightforward computation of the values T2 - Ty for values of 6, starting with Gp
and continuing until Ty - Ty becomes equal to At. That is, the interval of 61 is
divided into h smaller intervals 66 where

0 -0
50 = 200 +0p) "Plmax  Plmin
h h

The first estimation of 64 is ep + 68 and with this value compute

_ Pa~ P
py cos 61 - p2 cos 92

p= pl(l + e cos 61)

p
l1-e

a=
2

and the eccentric anomalies E; and E, from the F(a,p) function defined previously

to give:
E1 = F(e,el)
E2 = F(e,92)

and the elhptlc time
- —1 -—1 3 - - i -— i
T2 Tl = qa |E2 El e(sm E2 sin E].)'

This value of Ty - T4 is compared with At and if still too small, another increment
66 is added to 1 and the process repeated. When Ty - Ty is larger than At, then
the interval 69 is halved and subtracted from the last value of 01- This method of
iteration is free from the singularities involved in methods using derivatives and is not
significantly longer. The value of h wused affects the time of iteration; however, an
arbitrary value of h =3 seems to produce sufficiently fast convergence.
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Hyperbolic transfer orbits.- A value of At < ATp gives hyperbolic transfer orbits
and hence -y < 91 < §_. The method of iteration is identical to that for the elliptic case
although the equations differ slightly. These equations appear as

69=w+&2=ep-(-w)
h h

91=9p-69

The iteration begins at ep as in the elliptic case but now proceeds into the region of
smaller 91

P =P
pq cos 91 - pgy COS 92

e =

p= pl(l + € cos 91)

a=_—P (a <0)
1—e2

The hyperbolic time functions must now be used and equation (B5) is applicable if  is
set equal to -1.0; thus, \"i“; (1! is obtained. Proceed with the usual hyperbolic '"eccentric

anomalies' which are the F(o,8) functions with the preceding replacements.
1
F,=F (6’91)

F, = F'(e,ez)

and the times from 6=0 to 9 = 91 and 6 = 92 as

-
T, = él;\l-a3 e tan Fy - In tan(—2—1+ %ﬂ

- LG8 _ (F_% 1)
T2"277 a etaan Initan 2+4
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Compare To - Ty with At. If it is still larger, compute again with a new 61
decreased from the last by 66. If T2 - T1 is greater, increase 64 by %9- and pro-
ceed in this manner until the desired agreement is obtained.

Special cases.- In the case that P1 =Py in either the elliptic or hyperbolic case,
special computations are necessary. For instance, the iteration can no longer be accom-
plished by incrementing 61 as 04 becomes a fixed value -y. The problem is solved
by iterating the eccentricity in a straightforward manner and is easily followed in the flow
chart in appendix D.

In the case that the time ATp happens to be equal to At, then there is no further
iteration as the solution is the parabolic case.

Computation of the properties.- After obtaining 01> information on the rates of change
is obtained. Also the quantities Py and Ps must be reassociated with re and gi.
The properties of the transfer orbit occurring at t=t;, t=t; are definedas p;, Py
65, and 9f where

P =Py (& < Ty)
P =Py (& > 14)
Pg = Py (s > &)
Pr = Py (rg < &)
6; = 04 (gi < rf)
03 = -0 (51 > rf)
0 = 09 (rf > gi)
6p = -0, (rf < gi)

These relations follow directly from the geometry of the transfer orbit and the defini-
tion that Py is the minimum of re and & and Ps is the maximum of Ty and &;-
The rates of change at t = ti; t= tf in the plane of the transfer orbit may now be com-
puted. Immediately after the impulse at t = ti’

and immediately before the impulse at t = te,
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: 1
9{ = @_
pr

. 1 .
Py —\]ge sin 6;

The transfer orbit plane is defined in exactly the same way as the initial interceptor
orbit with the elements £, w, i, and 63. The anomaly 631 and inclination i were
found previously. Once £ and w have been determined, the transformation matrix
[bij for transforming the position and velocity vectors in x', y',and 2z' (see fig. 3)
to components in X,Y,Z is needed. This transformation matrix is identical with the
[aij] transformation matrix where wp Qp and i; are replaced by w, Q,and i,

The velocity vector at t =t inthe X' direction is ﬁi(x'), y' is ﬁi(y'), z'

is p;(z') where

f.)i(z') =0
The velocity components at t = tf in the x',y',z2' coordinate directions are
bf(x') = f)f cos 6 - pféf sin 6;
bf(y') = éf sin 05 + pféf Ccos 6 (B43)

F.’f(z') =0

These velocity components may be transformed to components in the X,Y,Z coordinate
system by use of the |:bij] matrix above.

From these results the velocities may be determined at t =tj in the initial inter-
ceptor orbit and t =t in the target plane. Then at t=1t; inthe Xx,y,z coordinate

system:
gi(x) = & cos v; - £;v; sin vy

£,(y) = éi sin v, + £;7; cos v; (B44)
éi(z) =0

which may be transformed to X,Y,Z coordinates by the matrix [a-lﬂ.
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Finally, obtain the velocity after the final impulse directly from the components
X,Y,Z without transformation

f'f(X) = f'f cos ¢ - rfq'bf sin ¢,
i'f(Y) = f'f sin ¢, + rfq.bf cos ¢ (B45)
ff(z) =0

The Velocities in X, Y,and Z

The matrix operations on these vectors give the desired velocity components in the
Newtonian frame X,Y,Z. These components are denoted by V,(j) where the subscript
k refers to the time (where k equals 1 and 2 just before and after the initial impulse
and k equals 3 and 4 just before and after the final impulse) and j to the component
X,Y,Z. These velocity components, in terms of the components shown in equations (B42),
(B43), (B44), (B45), and the elements of the [:aij] and [bij] matrices, are given in the
flow diagram of appendix D.

The velocity increments required to perform the rendezvous maneuver are easily
found by subtracting these components. For the velocity increment at t = tl, it is neces-
sary to subtract the corresponding components of state (1) from state (2) as

AV,(X) = V() - V;(X)
AV,(Y) = Vo(Y) - V,(¥)
AV,(Z) = Vy(2) - V,(2)

and for the terminal maneuver subtract state (3) from state (4) to give the desired

increments
AV4(X) = V,(X) - V3(X)
AVL(Y) = V,(Y) - V4(¥)
AVL(Z) = V,(Z) - V4(Z)

The total velocity increment for the maneuver is the sum of the maneuvers at t = ti (AVI)
and t=t; (sz)

AV, = \/Avi(x)2 + AVi(Yiz_; ;Avi(isé
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AV, = \/Avf(x)2 + AVf(Y)z + /.\vf(z)2
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DESCRIPTION OF PROGRAM

This program was written in the FORTRAN IV (Ibsys version 9) language for the
IBM 7094 computer at the Langley Research Center. Throughout the program there is an
emphasis on simplicity, but capability has been provided for several uses and for a free-
dom of choice on input and output.

The method of solving the problem can readily be obtained by following the flow dia-
gram (appendix D) and the description given in appendix B. The description in this
appendix gives additional information about the options available, types of input and out-
put, criteria for testing variables for transfer in the program, criteria for testing the
convergence in the iterative processes, and criteria for incrementing the times. The
methods used in the iterative processes are described fully in appendix B and can be
followed on the flow diagram (appendix D). The flow diagram also shows the methods of

incrementing Aty, At,and v,.

A complete listing of the FORTRAN IV program is given as appendix E.

Subprograms

Six small subprograms are used in addition to the main program. They are called:
AAA, VELOC, SIX, ANOM, SPACE, and CONVRT. An explanation of the computations,
provided by AAA and ANOM, are included in appendix B. Equations (B5) are contained in
AAA and equations (B9) are contained in ANOM. The other subprograms are self-
explanatory; however, a brief description of the uses of all six subprograms is given here.

AAA is used to compute the eccentric anomaly if the true anomaly is known or vice

versa.
VELOC is used to compute the velocity components.
SIX is used to compute the elements of the [aij] and [blﬂ matrices.
ANOM is used to compute the eccentric anomaly if the mean anomaly is known.

SPACE is used to test the line count and to skip pages and print column headings when
necessary.

CONVRT is used to convert the times from dimensionless quantities to units corre-
sponding to input for printing purposes.
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Options Available

The program offers several options for choosing the variable which will be incre-
mented initially and for choosing the type of input. This choice is made by reading in
three control factors: GUIDE, OPTION, and DATAS.

GUIDE determines whether Atw or At wvaries inifially in the program and gives
the appropriate output format regarding the choice. The program provides that the time
Aty or At not incremented initially will be incremented secondly, after which v = will
be incremented. This procedure works for any number of At, Aty, and v, values.
The quantity incremented initially will appear as the abscissa for ease in plotting or ana-
lyzing the data. Hence,

if GUIDE =1, Atw varies initially;
if GUIDE = 2, At varies initially.

OPTION provides a choice of three types of input for times:

OPTION =1, Atw, At input dimensionless;
OPTION = 2, Atw, At input in minutes; and
OPTION = 3, At_, At inputin days.

Restrictions are placed on maximums for Atw and At Dbecause of the six spaces
allowed by the output format for printout of the quantity varying initially. The restrictions
are due only to the output format, and may easily be changed.

(a) If either time exceeds 9999.0 minutes, they must be read in either dimensionless
or in days.

(b) If either exceeds 9999.0 days, they must be read in dimensionless.

() If either exceeds 9.9999 in dimensionless time and is restricted by (a) or (b), the
leftmost characters of the value will not be printed on output.

DATAS provide a choice of input:

if DATAS =1, use Keplerian input;
if DATAS = 2, use relative orbital input.

Input

Information on input may be found in the ""Computer Input and Output't section of the
paper and in the immediately preceding paragraphs. Input is to be made in units
according to the following criteria:

45



APPENDIX C

(1) The quantities p and ap are dimensioned, unless time is dimensionless in
which case they may be in any units desired. However, in order to get values for PT
and VCT’ p and am should be dimensioned.

(2) All angles are in degrees.

(8) Times are in units described under ""Options Available" in this appendix.

(4) All other quantities are dimensionless.

Input cards in the order to be read in and the proper FORTRAN formats for each are
listed in the following table:

Order of cards Variable names FORTRAN format
1 GUIDE, OPTION, DATAS 4E18.8
2 AMU, AT 4E18.8
3 AH, RMIN, ET, PHIO 4E18.8
4 DTWI, DTWF, DTTI, DTTF 4F18.8
5 DELTW, DELTT 4FE18.8
6 Keplerian input: 4E18.8

EI, AI, PDMEGAI, OMI
Relative orbital input: 4E18.8
XO, YO, 70
7 Keplerian input: 4E18.8
AIl, ANUO1, ANUOL, DELNUO
Relative orbital input:
XODT, YODT, ZODT

Output

All output will be in units corresponding to input. The output format will vary as At
and Atw are varied initially. When a set of data is read in, those initial conditions are
printed. As v, and At or Atw are incremented, they are printed. The computed
values are then printed in columns. Special notation and messages which may be printed

are

(1) If relative orbital input is used and a; 1is computed as less than zero, a message
to this effect will be written and the program will transfer to the initial input section.

(2) ¥ i2z90°- 0.1, the message '"i =+/-90 degrees not acceptable data" is
written.

(3) If the orbit is parabolic, the value for a will appear as 99.999 instead of .
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Testing Criteria

T inine a0 asterisk is printed at the extreme right-hand end of the line

There are several places in the program where tolerance factors or allowances for

computational inaccuracies must be defined to insure proper flow through the program.

An explanation of the values chosen in these tests follows:

Values compared

Heg :
i with 0.99999995

0o

1ii with 90° -~ 0.10

ATp with At

i with 0.5 % 10-7

AT with At

56 with 1.0 x 10-7
de with 1.0 x 10-7

Py with Py

A6 with 0.0001°
A9 with 3600
- 0.0001°

Remarks

Hoa

This test compares the value of the cos iI, (ﬁ>, to 1.0, and
Hg

restricts the minimum value of a computed iI to be 0.0001

radian; otherwise, iI is set equal to 0

Data which result inan i of 90° are not acceptable in this pro-
gram. The absolute value of i is tested against 90° with a
margin of 0.1°

This test of the parabolic time against the transfer time to
determine the type of orbit results in a parabolic orbit only
if the values are equal. A tolerance of 0.5 X 10‘6(At) defined
as CRIT was allowed at the point of equivalence for computa-
tional error

For this test a margin of tolerance of 0.5 x 10-7 was allowed
for machine inaccuracy

This test is made to determine when the convergence is suffi-
cient to leave the loop in the iteration process. A value
CRIT = 0.5 X 10-6(At) was defined to give a tolerance mar-
gin based on the value of the transfer time and to cover any
computational error

The appropriate test is made in each iteration scheme to test
for the effectiveness of the increment on the variable. If the
increment is equal to or less than the value tested against,
its effect on the variable is negligible and the iteration is
ended. This procedure acts as a safety check for ending the
iteration in the event that AT never gets within the pre-
scribed range (CRIT) of At

A tolerance margin of 1.0 X 10‘6(3.1), defined as CRIRH@, pro-
vides for transfer to the special iteration necessary when
Py = Pg

Restrictions are put on a margin of 0.0001° around
Ag = 0°(360°) because of computational sensitivity. For
these cases, transfer orbit properties are set equal to the
initial target orbit properties and the iterations are omitted
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The quantities used for testing in incrementing Atw, At, and v, areas follows:
TWFMDT = At (last) - 1.5(st.) - TESTTW
TTFMDT = At(last) - 1.5(6t) - TESTTT
ANLMDN = v, (last) - 1.5(6v) - 1.0 X 10-7
DTWFT = At (last) - TESTTW
DTTFT = At(last) - TESTTT
ANUOLT = y_(last) - 1.0 x 10-7
TESTTW = 0.5 X 10'6]:Atw(1ast)], or =1.0x10"7
TESTTT = 0.5 x 10-6[at(last)], or = 1.0x 10-7

The TWFMDT is used to test against Atw and allows it to be incremented by étw
until AtW is greater than or equal to Atw(last) -1.5 btw. A value TESTTW is arbitrar-
ily chosen as 1.0 X 10-7 or 0.5 X 10‘6|:Atw(1astil depending upon whether 6tW is 0 oris
greater than O, respectively. The TESTTW value is included to provide a tolerance for
computational error in the value of TWFMDT if the 6tw is equal to 0 and to insure
that control is transferred out of this loop after computation with Atw(first). The DTWFT
is used to test against At and always provides the computation for Atw(last), even if
Atw(last) - A}W(fé;'st)

oty
insures ease in incorporating any additional desired statements or controls, such as those
for plotting routines, in the program at the end of a series of incrementations. The
TESTTW in the expression for DTWFT provides tolerance for machine error.

is not an integer. This separate control for the final point also

The same explanation applies for TTFMDT, DTTFT, and TESTTT, if these variable
names replace TWFMDT, DTWFT, and TESTTW in the preceding paragraph. These vari-
ables are used for testing in the incrementing procedure for At,

A similar explanation for ANLMDN and ANUOLT, used for incrementing v o Bolds
with the exception that the tolerance margin or computational error is chosen as
1.0X 10" 7 for both values, instead of being a ratio as in TESTTW and TESTTT, because
v_ 1is in radians (in the form X.XXXXXXX) and the 1.0 X 107 will always be effective on

o
the number of places used in the computation.
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The mathematical symbol and its FORTRAN equivalent are given in the following table:

Mathematical symbol Fortran symbol

a AT AT A

aij Al11,A12 A21, A22 A31,A32

bij B11,B12,B21,B22,B31,B32

c C

e ET,ELE

E ETO,ETF,EIO,EIl. EL,E2

F F1,F2

h AH

H AHO1,AHO2,AHO3,AHO

i BLLAGII.O

M AMTO,AMTF,AMIO,AMII,AM1

p PLPT,P,PP

Pr TPER

r RO,RODT ,RF,RDTF,RDTF1,RDTF2,RMIN

at DTWL,DTWF,DELTTW

At DTTI,DTTF,DELTTT

T,Ty T1,T2,TP1,TP2

AT DT, DELTTP,DELTTC

v Vvo1,v02,v03,VO

Vor VCT

Vk(j) V11,v12,v13,v21,V22,V23,V31,V32,V33,V41,V42,V43

AVi(j) ,AVf(j) DV11,DV12,DV13,DV21,DV22,DV23

AV;,AV DELV1,DELV2

AV DELV

X", y,z! Xy, 2 X0,Y0,Z0,YODT,ZODT

a ALPHA

v GAMMA

v GAMBAR

Ap DELTTH

0 TH1,TH2,THP,THI,THF, THDTI, THDTF, THPMAX

o6 DELTH

i3 AMU,MU

v ANUO1,ANUOL,ANUO,ANUI,ANUDTI,NUO1,NUOL,NUO,NUI

£ X101,X102,X103,X10,XIODT , X1, XIDTI, XII1,X112,X113,XIDT1,
XMOIDT2

p RHO1,RHO2, RHPI, RHOF ,RHODTI,RHODTF ,RODTI1 , RODTI2,
RODTF1,RODTF2,RHOM

¢ PHIO,PHIODT,PHIF,PHIDTF

{1/ PSI

w OMI,OM

Q OMEGAI,AMEGA

49

|



APPENDIX D

COMPUTATIONAL FLOW DIAGRAM

The computational flow diagram is given in this appendix. All quantities are dimen-

sionless unless otherwise specified.
included on this diagram.

Input 2 alternate
XY 5T g 2,07, = 0

[ crange asgrees o racans (3, |

i

PT=1-eT2

b
P
0 l+epcos ¢,
. Py
¢°—r02

P ep sin ¢g
0=
\ﬁT

Vo1=Fo+ %5 = ®o¥p

Voz = V5 + Po(fo + x5)
Vo3 =25
{01 =0t Xg

£02=Y5

3 it
Pp=27 -%—(sec); Ver = \!%('SE_

Write input
Write message: 3y is less than zero

o

50

Provisions for control of spacing on output are not

i i
1 Aty(first) at(first) 1.0 dimensionless |
: Aty{last)  At{last) ) OPTION = {2.0 minutes !
{ otw ot 3.0 days |
i

Input 2.
ep Ql(degrees) vo(first)(degrees)
ap wI(degrees) Vo(last)(degrees)
iI(degrees) 6vo(degrees)

®

Hop = £02Y03 = £03V02
Hy2=£03Y01 ~ §61V03
Hy3 = £61Y03 = $02V01

= (Hol)z + (Hoz)z * (H03)2

Hy = B

ﬁ

F'_Io.’i
Hy

> 0.99999995

=)

< 0.99999995

HoB
Hy
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V

;

Write
b 0 T il 0 Oy 4
dosvolfirst),vo(last),p,ap,Pp,Vep

At(first),At(last), Aty (first), Aty(last)
h

Tmin’

DATAS = 2 write
’ = " 1] 10t it it
XY 920 %0 0r%0
DATAS =1
Write fn ¥
vo(ixrst)
=0 At(first) = 6t
At(first):0 A
‘Write message
Write
GUIDE:1.5 GUIDE = 2 £ Aty (first)choosing format
depending upon the value of
OPTION
GUIDE = 1
Write

At (first)choosing format
depending upon the value of
OPTION

DATAS:1.5

DATAS = 2

Change degrees to
radians:

P = aI(l - elz)
Py = (1 - eTZ)

b oWy v, (first) d
uo(last),auo
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. Hos
1I-arccos-H—° O<if=a
cos B = Hyo €05 ¢g + Hyp sin ¢
1. Ho sin if
sin 9y = Hy1 cos ¢ - Hyg sin g
1 Hg sin i

- sin 95 <gor=
Ql—mctanm 0=Q =27
£02Ho1 - £o1Ho2

EH, sin iy

{03

&g sin if

cos(wy + vg) =

sin(wy + Vo) =

sin({wy + Vo)
(wy + Vo) = arc tan m

wp = (v +vg) - Yo

V

Change At and Aty to dimensionless

quantities:
1.0 At= At
2.0 At =60 AL
Option = Pr

3.0 At= 86400 1?%

0 < (Wl +ve) <27

Convert radians to degrees for printing (¢0,$21,w1,11,v0(first),VO(Iast) ,6v0)

CRIT = 0.5 x 10-6(at)
CRIRH@ = 1.0E - 06+ AI
y=1.0

*  Epg = S1(eT,¢0,%)
Mo = ETo - e sin Eg
My = Mo + 2n(At + Aty)

**  Epy = Sple,Mry)

¢t = Sy(-e,ETq,7)

rpe— T

1 +ep cos ¢

- _ pT

o¢ Crf2
em sin

P i |
Ve

2
‘F My; = My, + m(Aty)
ual
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U

if=0
Q=0
£ 4cO0s ¢ -E ,8in¢
cos(wy + vo) = 0l o50 02 o
sin + cos
sin(wy + Vo) = fo1 4)05 £o2 %o
o

Compute quantities to use in testing for the
completion of incrementing Aty, At, and vg:

K TESTTW, TESTTT, TWFMDT, TTFMDT,

ANLMDN, DTWFT, DTTFT, ANUOLT

vg = vylfirst) Vo = Volfirst)

Aty = Aty(first) At = At{first)
i V
Y, V
At = At(first) Aty = Aty (first)

Efo = Si(er,vo,7)

Mj, = Exp - €1 sin Epo

Eyi = Spleg,Mp;)
vj = 81(-e,Exi,»)

b=
i =
1+e1cosui ——(>®
.'_‘PI
Vl—Eiz

'. - eI Sin lli

A

*S{ in this diagram refers to Function Subprogram AAA.
**Sg in this diagram refers to Subroutine Subprogram ANOM.
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Determination of Ag, i of transfer orbit

&1 = £i[cos 9 cos(v; + wy) - cos if sin £ sin(y; + w)]

tio = gi[s'm Q1 cos(vj + wp + cos i cos Qg sin(yj + wI)]

£33 = &;[5in iy sin(v; + wp]

i=arc tan b3

&i1 sin ¢f - £p ¢

<i<

1
[XIE]
[SIE]

08 ¢f

Fil: (900 - 0.19)

1112 (90° - 0.19)

1i1< (90° - 0.19

Write:

cos Af =
&

sin Af =
gjcosi

Af = arc tan SN A8

Computation of parabolic time

pg = max(rf,£;); py = min(rg, &)

if rp=¢g;,then py=py

£j1 cos ¢ + £ sin

&j1 sin ¢; - &5 cos

ed

%

A6: 0,001°

A6 < 3600 -

0.001°

c =Vp12 + p22 - 2pypg cos Al
Py - Py COS A

sin y = L_Z_c_
pg sin A8

cos Y = —

Y = arc tanﬂn—y’—
cos Y
Pa = Py

PR |
a = s T

9p=a—¢/

Pp = p1(L + cos 6p)

_1\,;31 3(%) . 1
Tpl—ﬁ [ﬁtan(2 +2tan

i= +90° not acceptable data

A6 > 0,001°

1
[SIE]
A
<
1A
w
vl

0

A

Rl

nA
I

(Note: use of 6p = (6p)min)

)

_Lw 3[1 (an3(00 + 26
Tpg—zﬂpp&tan< 2 /+
ATp = Tp2 - Tpl

(O max =7 - @+ V)

% tan(ep +2A9):l

A6 £0.001°

Write message
a=1.0

P=pPT

01 = ¢f - A8
82 = 1

e=eg

—=®

z 3609 - 0.001° j&
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At < ATy
hyperbolic >@

e=1.0
_ P=Pp
At = ATp o e
parabolic 61=6p e ‘e
at> ATp 09 = 01 + A8
elliptic a = o (99.999 for printing purposes)

-2
69=” (9p+w)
h
61 =6p + 060 . A
@ — ; T
09 = 81 + A8
e P2 =Py
p1 cos 81 - pg cos O3

p =py(l +e cos 07)

Ep = sl(eyel:‘/)(.yzl)

Ez = 81(e,02,) ()

AT = iVajEEz - Ej - e(sin E3 - sin Eqj]

AT : At < At 81 =61 + 668 =
-7
66> 1.0 x10 61 =6y - 60 -

86 1.0 x 10-7

AT > At

56 : 1.0 x 10~7

(=4

e

]
|

*This precaution is necessary in cases where 6; = Gpm ax and

y AT = At
>. <+ machine computes e to be (falsely) greater than 1.




elliptic (P1 = Pg)

APPENDIX D

ATe < At

AT, : At

/

A
B A
p=p3(l +ecos y)

69 = 01 + A8

Ey = Sl(e:elﬁ’) (y=1)

__ W3k, - e si
AT = - EF(EI e sin Eq)

AT = At

p=pyl - e cos )

a= P
1-e2

61=7-y
09 = 61 + &AF
Ep = S1(e,601,) (1)

M; = E1 - e sin Eg

S YT
aT = 2B3(r - M)

e =1.0 x 10-7

6e £1.0 x 10~7

AT = At
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hyperbolic loop py # Pg
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<z Py = Py
=D

81 =61 + 66 69 = 61 + A8
- P2 -P1
pq cos 9] - pg cos 63

61=0p - 60 l

50 (1 +ecosf) =

0

50 0.1 x 1078

Write message

}
®

p = py(l + e cos 91)

a=—P
1-e2

F1 = 51(e,019) 5y

Fy = 51(9:92:7)(Y:_1)

F

T =_L‘l_ 3e t. - -1
1 2 a{eanFl lnl}anz
- L - T2
Tz-z17 a étan Fo lnlEan(—2

T~

+

+

(1+ecosdy):0

(1+ecos@)>0

Jl

AT =Tg - Ty
‘L - v
AT > At

AT : At - . 91=91-69'——!>

AT < At

56 =98 56> 1.0x1077
2 59 : 1.0 X107
56 = 1.0 x 1077

AT = At
= (=




hyperbolic loop (p1 = P2)

@
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ATp>At
Py = P2
1
be=— 01 = -
h 1=¥
e=14+de ; f9 =01 + A0

v

p=py(1 + e cos 67)

a:-L
1-e2

Fl = Sl(eyelay)(.y_____l)

1
AT=-%- -a3 e tan Fq -lnlgan

F
2 4

AT > At

AT : At >

AT < At

AT = At

=e + de

be :

de > 1.0 x 10-7 o

s

e=e - je

se = 1.0 x 10-7
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- _Db
pmin—1+e‘

Print out
*

in output

Pmin < 'min

Pmin = P1 Bmin Z Tmin

=1
<

Pg =Py éi=—‘l%
)
Gi=211-92
. esingj
Pj = —=——
gf = B + AB ! |]_13
e'f=1@2
Pt
. esin g
pr ==
!‘ VP
211 = €OS wyf cos - cos i sin g sin wy aj9 = -sin wy cos £ - cos i sin & cos wy
agq = cos wg sin Qf + cos if cos Q sin wy agg = -sin wy sin Q1 + cos if cos Qf cos wy
agy = sin ij sin wy agg = sin if cos wy
i>0 R=¢s+7
> >
W=7 - 4
Q=
= T e(d)
w=27r-ef
JL i=0 Q=0
R -
w=bf - 6

58



A

S

Matrix[bij] sameas [aij]
with © replacing Qf
w replacing wg

i replacing i

;

éi(x) = éi cos vj - gir}i sin vy
éi(y) = éi sin v; + 5113-1 cos v
[ii(x') = pj cos 6 - piéi sin 6
pi(y") = py sin 65 + pif; cos 6
pg(x') = pg cos 6 - pgfs sin 6¢

pg(y') = pg sin 6 + pféf cos 6f

| rf(X) = It COS ¢p - rf(.bf sin ¢f

r¢(Y) = ¢ sin ¢ + rf s COS Pf

V1(X) = a114;(x) +a19£i(y)
V1(Y) = ag1£i(x) + agaéi(y)
V1(2) = a31£i(x) + agaé;(y)
Va(X) = b11pi(x") + b125i(y")
V5 (Y) = b215;(x") + b220;(y")

Va(Z) = b31pi(x') + b320i(y")

APPENDIX D

V3(X) = b11pg(x") + b12p(y")
V3(Y) = b2165(x") + bagpe(y")
V3(Z) = b31p;(x") + b3aps(y')
Va(X) = 13(X)

V4(Y) = 7¢(Y)

Va(Z) =0
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\/

AV}(X) = Va(X) - V1(X)

AV;i(Y) = Va(Y) - V1(Y)

AVi(Z) = Va(Z) - V1(2)

AVE(X) = V4(X) - V3(X)
AVE(Y) = V4(Y) - V3(Y)

AV(Z) = V4(Z) - V3(2)

v

AVj = \ﬁ;x/'i(x)z + AVi(Y)2 + Avi(iii

AV = VZ\’f(X)z + AVf(Y)2 + A\;f-(z)é

AV = AVj + AVy

!

Convert radians to degrees for printing: ¢¢, vi, 61, A8, i

Convert times (At and Aty) into units corresponding to input

‘; o B

¥rite computed quantities according to appropriate format

] B

Convert times (At and Aty) back to dimensionless times

;

GUIDE = 2
GUIDE : 1.5 - -W@
GUIDE = 1 v
>




]
f

APPENDIX D

GUIDE = 1

Aty < TWFMDT

>

Aty 2 TWFMDT

Aty = Aty + Oty

Aty < DTWFT

Aty = Aty(last)

At < TTFMDT

At 2 TTFMDT

At = At + 5t

Convert At into units
corresponding to input
and write

At = At (last)

Convert At into units
corresponding to input
and write

Vo = Vg + 8Vg

Convert At (first) into
units corresponding
to input; write
v, and At (first)

:

Vo=V, (last)

Convert At (first) into
units corresponding
to input; write
vo and At (first)

:

At < DTTFT
At : DTTFT >l
At 2 DTTFT
Vg < ANLMDN
.- . &
vo 2 ANLMDN
vg < ANUOLT
-]
vy 2 ANUOLT

Read in new input,
beginning with
input 1

61
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At < TTFMDT
At = At + 6t j*D

At 2 TTFMDT

At < DTTFT

At = At (last) ]_|>@

2 DTTFT

Aty = Aty + oty

Convert Aty into units
corresponding to input
and write

Aty < TWFMDT

2 TWFMDT

Aty = Aty (last)

Convert Aty into units
corresponding to input
and write

Aty < DTWFT

Vo = Vo + GV,

Convert Aty (first) into units @
corresponding to input;
write v, and Aty (first)

vy < ANLMDN

vo = vg (last)
Convert Aty (first) into units | o @

corresponding to input;
write v, and Aty (first)

Read in new input,
beginning with
input 1
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FORTRAN PROGRAM

The FORTRAN program to determine the velocity increment required for rendez-
vous between two arbitrary elliptic orbits is as follows:

WRITE(G,10L)
VIRITE(G,2102)
J=7
=2
10 READ(5,100)GUIDE,OPTIGH,DATAS
READ(5,100)ANHUL AT
READ(S,IOO)AH,RHIH,ET,PHIO
READ(5,100)DTUIE,DTUF,DTTL,DTTF
READ(S, 100)erTh,DELTT
lF(Hd.GT 1)GC TO L8
J=3
GO TO 49
48 J=dJ
ES 11J=0
IF(DATAS . .OT.1.5)G0 TG 11
READ(S, IOO)EI A‘,JHCHFI, SN
REAN(5,100)A1 l,AHUOl, MO L, DELHUD
24 TPLH 5.2831853«8ORT((AT==2/ 1) *AT)
VCT=SQRT(AIU/AT)
URITE(G,108)
”DITF(G 106)ET,EV, AL, OLEGAT, CHL, AL
QTE (0,110)
!ITE(G 10G)PHIO,ANUCT, AHUOL, AU, AT, TPER,VCT
RITE(6,132)
”QlTh(o,l?S)ﬁTTl DTTF,OTWE,DTUF, RGN, AN

F(DATAS.GT.1.5)G0 Tu?25
HRITE(GE,12L)

d J+2
55 URITE(S,132)A11U01

C IF OTTE 1S FIPUT AS ZEDNG, 1T 1S REASSIGHID A VALUD EOolVOLRHT T

C T“" IHCREHEHT S1ZE.
1ECRTTI ., n.0)an TO Bh
1SIG=4L9
CALL SPACE
J=d+2
DTTI=DELTT
WRITE(G,162)07TH

5L COUTHIUE

IF(GUIDE.GT.1.5)50 TO 30
IFOOPTICH LT L .Z)GC TC 50
VRITE(G,180)LTTI

36 TC 51

5¢ VRITE(G,130)27TI

51 VRITE(G,116)
GOTL3]

3G COUTHIUE
IFCOPTICHWLT.1.5)GC TG 53
VRETE(G,133)0T1
GO TC 52

53 VRITEL(G6,128)2T7i:

52 URITE(G,118)

3L J=d+h
IF(OATAS.GT.1.5)G7 T 26
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64

26

11

17

138
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Pl=Al*(1,0-El*%2)
PT=1,0-ET**2
PHIO0=PHIO*,17453293E-01 :
OMEGA!I =OMEGAl*,17453283E~01
OMI=0MI*.17853293E-01
All=AL1%.17453293E~-01
AHUO1=AHUOL*,17453293E-01
ANUOL=ANUOL*.17453293E-01
DELNUO=DELNUO*,17453293E-01
GO TO 200
READ(5,100)X0,Y0,Z0
READ(5,100)X0DT,YODT,Z0DT
DELNUO0=0.0
PHIO=PHIO*.17453293E~01
PT=1.0-ET**2
CPHIO0=COS(PHI10)
SPH10=SIN(PHI0)
RO=PT/(1.0+ET*CPKI0)
PHIODT=SQRT(PT)/(RO**2)
RODT=(ET*SPHI0)/SGRT(PT)
VO01=RODT+XO0DT=-PHIODT*YO
VO2=YODT+PHIODT*(RO+X0)
V03=20DT

X101=R0+X0

X102=Y0

X103=Z0 '
XKI0=SORT(X101#%2+X102%#+%2+X103%%2)
VO=SQRT(VO1l#*2+V02=%2+Y(Q3#%%2)
Al=X10/(2.0=-X10%V0=*%2)

IF Al IS LESS THAN OR EQUAL TO ZERO, A MESSAGE TG THIS EFFZCT IS

WRITTEN AND TRANSFER IS TC THE BEGINMING OF THE PROGRAN,
WHERE A MNEVW SET CF DATA HMAY BE READ I,
1F(A1)17,17,18
TPER=6,2831853*SQRT((AT#*2/AIU)*AT)
VCT=SCRT(ANMU/AT)
WRITE(6,148)
WRITE(6,106)PHI0,ET,AU,AT, TPER,VCT
WRITE(G,112)
WRITE(6,126)DTTI,DTTF,DTYIL, DTWF, R, B
WRITE(G,114)
WRITE(6,106)X0,Y0,Z0,X0DT,YCOT, ZGDT
VRITE(6,12L)
WRITE(G,1kL)
WRITE(6,10L)
GC TO 10
AH0L1=X102%V03-X103*V02
AHO02=X103%*V01-X101*V03
AHO3=X101%V02-X102+*V01
PI=AHO1#%2+AH02%%2+AHQ3#%2
AHO=SQRT(P!)
X10DT=(VO1=X101+V02+X102+V03=X103)/XIC
PIDAI=PI/AI



QOO0

13

28

13

15

20

16

21

23

25
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TEST TO INSURE THAT El IS HOT EQUAL TO THE SQRT OF A NEG GUAN
DUE TO SLIGHT COMPUTING IHACCURACY ON PI/AL. ASSIGN VAL
FOR COS(NUO) AND SIMNQUQ) [F THE QUANTITY UNDEL THE RADRI
1S MNEGATIVE,

IF(PIDAI.LT.1.0)GO TO 19

E1=0,0

Chuo=1.0

Stiu0=0.0

GG TO 28

CONTIHUE

El=SQRT(1.0-(P1/Al1))

CHUO=((P1/X10)-1.0)/EI

SHUO=(SQRT(P1))*XIODT/E!

CONTINUE

ANUO=ATAN2(SNUO,CHHUD)

IF(SHUO.LT.0.0.AND,CHUD,GT.0.0)ANU0=6,2831853+ANUD

IF(SHUO.LT.0.0.AND.C’UO LT.0.0)ANUO0=6,2832853+ANUD

CONTIMNUE

ANUOL=ANUD

MU0 L=ARUO

ClI=AlI03/AH0

IF(CI1.GE.0.99999995)GC TO 16

AlT=ATAN(SQRT(L.0-Cl1=*%2)/CI1)

FF(CHILLT.O. 0)AII=3.1Q15927+A!!

SALI=STH(ATL)

CONEGI==(AHO2+CPHIO+AHOL=SPII10)/(AKO=SAL

SOHEGI=(AH01*CPHIO-AHOZ*SPH!O)/(AHO*SAIl)

QUEGAI=ATAH2(SQIEG], PQ1F°|3 '

IF(SUHEPI.LT 0.0. AHD COMEG!.GT.0.0)0tiEGATI=6.2831853+0HEGAI

IF(SOMEGI . LT.0.0. AND.uOHEGI LT.0.0)O0NEGATI=6,2831853+CIECAI

CONTINUE

COPMN=(X102*AHO1=-X101*AH02)/(X10=AHC=SAL )

SOPN=X103/(X10%SAl1)

GO TO 21

All=0.0

O0MEGAL=0.0

COPN=(X101+CPI|10=-X102%SPHI10)/X

SOPN=(X101*SPH!I0+X102*CPHIO0)/X

OPM=ATAN2(SOP!i, COPN)

IF(SOPN.LT.0.0.AND.COPN.GT.0.0)0PN=6.2831853+0PH

IF(SOPN.LT.0.0.,AND.COPN.LT.0.0)0P!i=6,2831853+0PH

CONTINUE

O0iMI=0PN-ANUO

CONVERT AHGLES IMN RADIANS TC DEGREES FOR PRINTING

PHI0=PH]O0/.17453293E~01

OMEGAI=0MEGAl/.17453293E~01

CiMl=0111/.17453293E-01

All=A11/.17453293E~01

ANUO1=ANUO1/.175453293E-01

ANUOL=ANUOL/.17453293E-01

DELNUO=DELNUO/,17453293E-01

GO TO 24

WRITE(6,114)

WRITE(6,106)X0,Y0,20,X0DT,Y0DT, Z0DT

1T
ES
AL

B
i
i
“
c

)
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200

202

203

201

204
205

206
207

39
L1
L3
Lk
L5

L2

651
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WRITE(E,12L)

J=J+h

G0 TO 55

CHANGE TIIMES TO DIMENSIOMLESS QUANTITIES
IF(OPTION,LT.1.5)GC TO 201
{F(OPTION,LT.2,5)G0 TC 202
GO TO 203

CMIN=60,/TPER

DTWI=DTWI1 *CHIN
DTWFE=DTWF*CHIN
DELTW=DELTV+*CMIN
DTTI=DTT1#CMIN
DTTE=DTTF*CHMIN
DELTT=DELTT*CHIN

GO TO 201
CDAYS=86L00./TPER

DTV l=DTWI+~CDAYS
DTWF=DTWUF*CDAYS
DELTW=DELTW*CDAYS
DTTI=DTTI*CDAYS
DTTF=DTTF*CDAYS
DELTT=DELTT*CDAYS

CONTIHUE

IF(DTWF.GT.0.0)GC TO 204
TESTTU=,0000001

GO TO 205
TESTTW=.5E-06*DTUWF
IF(DTTF.GT.0.0)GO TO 206
TESTTT=,0000001

G0 TO 207
TESTTT=.5E-06%DTTF
CONTINUE
TUFHDT=DTWF=1,5*DELTW=TESTTV
TTFADT=DTTF=1.5*DELTT-TESTTT
ANLMDN=ANUOL-1.5%DELNUO-.,0000001
DTWFT=DTUF-TESTTY
DTTFT=DTTF=TESTTT
ANUOLT=AlUOL-.0000001
IF(GUIDE~-1.5)39,43,43
ANUO=ANUO1

DELTTT=DTTI

DELTTU=DTVI

GO TCL2

ANUO=ANUOL

DELTTW=DTVI

DELTTT=DTTI

CRIT IS A VALUE USED TC TEST THE ITERATION

CRIT=,5E-06*DELTTT
CRIRHO=1.0E-06%Al
COIliICHJ,GUIDE,ISIG

GAMIiA=1.0

ETO0=AAA(ET, PHI0, GAIIIA)
AMTO=ETO-ET*(SIN(ETO0))
AMTF=AITO0+6,2831853 = (DELTTT+RDELTTY)

SCHEMES FOR

CONVERGENC

>
[
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300

305

306

302

APPENDIX E

CALL ANOM(ET,AMTF,ETF)
PHIF=AAA(-ET,ETF,GAMIA)
CPHIF=COS(PHIF)
SPHIF=SIN(PHIF)
RE=PT/(L.0+ET*CPHIF)
PHIDTF=(SQRT(PT) )/ (RF=*=%2)
RDTF=ET*SPHIF/SQRT(PT)
E10=AAA(E!l,ANUO,GAMIMA)
AM10=E10-E1*(SIN(EL0))

AR T=AM10+((6.2831853=«DELTTVW)/(Al%%1.5))
CALL AMOMCEL,AMIL,ELLD)
ANUL=AAA(=-EIL,Ell,GALMA)
K11=P1/(L.0+EI*COS(ANUI))
ANUDTI=SQRT(PI)/ (X1 1*%2)
XIDTI=El«SIN(ANUI)/(SQRT(P!))
DETERMINATION OF DELTTH AND | OF TRANSFER ORBIT
OIPNI=ANUL+0MI
CCIPNI=COS(OIPNI)
SOIPNI=SIN(OIPHNI)

COMEGI=COS (OHEGATL)
SOMEGI=SIN(OMEGAL)
Cll“COS(AIl)

I=SINCALL)
XII1=XII*(CO“EGI*COIP!I-CII*SOHLGl*SOIDP )
AN12=X1 1 *(SOMEGI*COIPNI+Cl I «COIEGI*SCIPHNI)

K113=X11*(S11*SOIPNI)
SUBI=XI13/(X111*SPlIF=-XI12%CPHIF)
BI=ATAH(SUB1)

ASOL1=ABS(B1)
IF(ASQLI-1.5690510)306,305,305
CONTINUE

1S1G=48

CALL SPACE

WRITE(G,150)

J=J+2

GO TO 1028

CONTINUE

COTH=(X111«CPHIF+X1 12+SPHIF)/X1I
SDTH=(X111«SPHIF-X112%CPHIF)/(X11%C0S(B1))
DELTTH=ATANZ2 (SDTH,CDTH)

~

IF(SDTH.LT.0.0.AND.CDTH,. GT 0)DELTTH=6.,2831853+DELTTHi
IF(SDTH.LT.0.0.AND.CDTH. LO)DELTTH=6.2831853+DELTTH
CONTINUE

COMPUTATION OF PARABOLIC TIHE
RHO2=AMAX1I(RF,X11)
RHOI=AMINI(RF,XI1)
IF(DELTTH.GT.0,1745E=-0L AND.DELTTH.LT.56.2831679)G0 T4 308
DEGDTH=DELTIP/.17L53293E 01
1S1G=47

CALL SPACE

J=J+]

WRITE(6,16C)DEGDTH

A=1.0

P=PT

67



APPENDIX E

TH1=PHIF-DELTTH
TH2=PHIF
E=ET
GO TO 200
308 CONTINUE
C=SQRT(RHO1*%2+RHO2%%2=-2,0*%RHC1*RHO2*CDTH)
SPS1=(RHO1-RHO2+CDTH)/C
CPSI=(RH02%SDTH)/C
PSI=ATAN2(SPS1,CPS1)
{F(SPSI.LT.0.0.AMD,CPS1.LT.0.0)PSI=5,2831853+P51
304 CONTINUE
SALP=(RHOZ-RHO1)/C
IF(SALP.GE.1.0)GO TO 311
ALPHA=ATAN(SALP/SQRT(1.0=SALP*%2))
GO TO 312
311 ALPHA=1.5707853
312 COHTINUE
THP=ALPHA-PS|
PP=RHOI*(1.0+COS(THP))
TTEP=(SI{I(THP/2.))/(COS(TIiP/2.))
TTHPDT=(SITUC(THP+DELTTHY/2.))/ (COS((THP+DELTTH)Y/2.))
TPL=((PP**1.5)*((TTHP=**3)/6,+TTIiP/2.))/G,2831853
TP2=((PP**1,5)*((TTHPDT**3)/6.,+TTHPDT/2.))/5.2831853
DELTTP=TP2-TP1
THPMAX=3,1415927-(ALPHA+PS])
SUB12=DELTTP-DELTTT
ASUB12=ABS(SUB12)
IF(ASUB12-CRIT)37,37,38
IF DELTTP EQUALS DELTTT,THE ORBIT IS PARAZCLIC
37 E=1,0
P=pPP
TH1=THP
TH2=TH1+DELTTH

[®]

C A IS INFINITE, IS SET EQUAL TO 99.38%9% FOR PRINTING PURPOSES
A=9%8,999
G0 TO 800 :

c IF GELTTP IS GREATER THAK DELTTT, THE GRBIT 1S HWYPERSOLIC

c |F DELTTP IS LESS THA[I DELTTT,THE CRBIT IS ELLl“TIC

38 IF(DELTTP'DELTTT)QOO 37,600

400 SUB13=RE0O1-RHO2
ASUB13 HBS(SU813)
{F(ASUB13=-CRIRHO)500,500,401

C ELLIPTIC LOOP RH02 NOT EQUAL TO RHO1

401 DELTH=(3.1415927-2. *(THP+PS1))/AH
TH1=THP+DELTH

402 TH2=THI1+DELTTH

LE=(RH02-RH01) /(RHO1*COS(TH1)~RHO2+COS(TH2))

DIFF=THPIIAX-TH1
IF(DIFF.LE.C.0)GO TO 405
IF(E.GE.1.0)G0 TO 405
P=RHO1#*(1.0+E*COS(THL1))
A=P/(1.0=E*%2)
GAIMA=1,0
E1=AAA(E,TH1,GAMHA)
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E2=AAA(E,TH2,GAINA)
DT=((A**1,5)*(E2-E1-E+(SIMN(E2)-SIN(E1))))/6.2831853
SUB1L4=DT=-DELTTT
ASUB1L=ABS(SUB1L)
IF(ASUB1L4-CRIT)800,800,403
I1F(SUB14)404,800,405
TH1=TH1+DELTH

GG TO 402

DELTH=DELTH/2,
IF(DELTH-.0000001)800,800,408
TH1=TH1-DELTH

GO TO no2

ELLIPTIC LOOP RHO2 EQUAL TO RHOL
DELTTC=(DELTTH*(RHO1*+%1.5))/6.2831853
DELE=1.0/AH

E=DELE

SUBL5=DELTTC-DELTTT
IF(SUB15)502,501,501
P=RHO1*(1.0+E=(COS(PS1)))
A=P/(1.0=E**%2)

TH1=-1.0%PS]|

TH2=TH1+DELTTH

GAMIA=1,0

E1=AAA(E, TH1,GAMMA)
DT==-((A**1.5)*(E1-E+«SIN(EL1)))/3.1415927
SUB16=DT~DELTTT
ASUB16=ABS(SUB16)
IF(ASUB16~-CRIT)800,800,503
IF(SUB16)504,800,505
DELE=DELE/2.

| F(DELE-~,.0000001)800,800,512
E=E~-DELE

GO TGO 501

E=E+DELE

GO TO 501
P=RHO1*(1.0-E*x(COS(PS1)))
A=P/(1.0=-E**2)
TH1=3,1415927-PS|
TH2=TH1+DELTTH

GAMMA=1.0"

E1=AAA(E, TH1,GAIA)
AM1=E1-E*(SILN(E1))
DT=((A**1,5)*(3.1415927-AM1))/3.1415927
SUB17=DT=-DELTTT
ASUB17=ABS(SUB17)
IF(ASUB17-CR1T)800,800,506
IF(SUB17)507,800,508

E=E+DELE

GO TO 502

DELE=DELE/2.
|F(DELE~,0000001)800,800,514
E=E<DELE

GO TO 502
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600 SUB18=RHO1-RHO2
ASUB18=ABS(SUB18)
IF(ASUB18-CRIRHC)700,700,601
HYPERBOLIC LOOP RHO2 NOT EQUAL TO RKO1
601 DELTH=(THP+PS1)/AH
610 TH1=THP-DELTH
60%PTH2 =THL1+DELTTH
E=(RHG2=RHO1)/(RHO1*(COS(TH1))=-RHO2%(COS(TH2)))
CTH1=COS(TH1)
OPECT=1.0+E*CTH1
| F(OPECT.GT.0,0)GO TO 508
609 DELTH=DELTH/2.
IF(DELTH.GT.0.1E~08)GC TO 612

IF THE CASE IS A LIMITIHG HIYPERBOLIC CRBIT VITH E APPRCACIIN
(=1.0)/COS(DELTTH/2.0) UXITE A HGESSAGE AND DISCCHTINGE
CCUPUTATION FOR THAT CASE.

1S1G=LS

CALL SPACE

J=J+2

F=(=1,0)/CCS(DELTTHE/2.0)
iF(GUIDE.GT.1.5)G0 TG 611
CALL CONVART(DELTTY,CDTL,GPTICI, TPER)
VRITE(G,16L)CDTH,E
GC TG 1028

611 CALL CU”VTT(“FLTIT,,uTT,CPT! H,TPED)
VRITE(S,166)C8DTT,E
GC TG 1028

T HHRUE

ZEO'

2

.1.0)G0 TG 60&
1.0*;*(Cuo(T 1)))
1.0-5«*2)

-1 [y
QAiiin==1.0

Fl=AAACE,THIL, AN
F2=AAA0E,TH2, GALETIA)

TALFL= (al“("ﬁ))/(”us("">)

C“l 19—‘1/ +).1£1"...J-1?7/’r.
TSlg (Jl ( Uhln))/(qvo Su:l:)
Ti=(((~ ’)**1 5Y«(E=xTAIT1=-AL0S
TANF2=(S1iI(F2))/(CRS(F2))

SUB o-”2/2.+3.1u15§27/n.
TS20=(SIH{SUR2CY/(CCLH(S420))

T2=(((=A)#*1.5)% (E=TAl -“-xLP 1 (TS203))/5.2331853
DT=T2-T1

SUBR21=DT7-CELTTT

’\Sd l"'[‘ths(q"r)’)'l)

IF(ASUR221-C21T)800,800,603
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RHODTF=E#SIN(THF)/SQP
# ¢ Wﬁ}z,ﬁmﬁm; LA32, 000, GHEGA LT

809 ASI=ABS(3ZI)
IF(ABI-5,E-08)810,810,811
810 GiHEGA=0.0
OI=PIIIF~-TLF
GO TO 800
811 1F(B1)813,810,812
812 OHEGA=PHIF+3,1515827
0it=3,1L15927-TiiF
GG TG 960
813 GIEGA=PLIIF
Oi 5.2831853~THF

800 CALL SI1X{(Rz1,812,821,522,331,832,00 C‘
XIIDTl XIDTE=(COS(ANUL))=X il*/‘UD"l*(
RUOT2=XIDTI=(S1IU(ANIUT) )+X l!k“'UDtI“(PO
RODTII=RHODTI =« (COS(TLI) )=-RECI*THDTI = (S 11!
RODTI2=RECDTI*=(SIN(THI) I+RECI»THDTI * (CCS
ROSTF1=RHCITF*(COS(TLF))=RECF=TH
RODTF2=NHODTF* (STH(THF) )+ RIIOF*THDTF (C(S
RDTFl-nDTF*(COS(Pllr))-“c*PH!)TC*(Sl i (Pl

IDTrx (S 11

RDTF2=RDTF*(SIN(PHIF))+RF*PHIDTF=(SOS(PIIIF))

201 CALL VELOC(V11,Vv12,V13,A11,M12,

CALL VELOC(V21,Vv22,Vv23,011,812,821,522 ,1)¢103?,|dur!1,KQJTi
221,822,031,832,R0DTFL,ACETF

CALL VELOC(V31,V32,V33,811,312,
V4L1=RDTF1
V42=RDTF2
V43=0.0
1001 DV11=V21=-V11
DV1i2=v22-Vv12
OV13=V23-V13
DV21=V41-V31
DV22=VL2-V32
DV23=y43=V33

n21,A22,831,A32,K113T1, A1

1002 DELVI=SCGRT(DV11##2+4DV12%%2+3V13%%2)

DELV2=SQRT(DV21#+2+DV22%%2+DVY2
DELV=DELV1+DELV2
PHIF=PHIF/.17053293E=01
ﬁ“J!-ANUl/ 17453283E~C1
THI=THI/.27453293E-02
DELTTH=DELTTH/.17453293E-01
BI=Bl/.17453293E~01

CALL CCHVRT(! ELTTT,EELTTT,JPTlO

3w2)

L, TPER)

CALL COMNVRT(ZELTTY,! FLTTJ,OPTIPP TPV )

1S1G=49

CALL SPACE

J=J+2

IF(GUIDE.GT.1.5)G0 TC 1030
IF(K.GT.1)G0 TO 1032
IF(GPTION.GT.1.5)G0 TO 1040
WRITE(E,120)DELTTH,PEIF,ANUL, &
113,0V21,0V22,DV23,DELVY, DELY2,
GO TO 1031

L4
i)
L

)é e.fa; LA -L’:{}v/ Q}’\.zz i
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1040 URITE(6,134)DELTTY, PHIF,AlIUI,E,A,B1,THI,DELTTH, RUGHH,DV11, DV12, 0V
113,DV21,DV22,DV23, DELVL . DELV2, DELV
G0 TO 1031
1032 IF(OPTION.GT.1.5)G0O TO 1041
WRITE(6,122)DELTTL, PHIF, AlUI, £, A R1,THI,DELTTH, RIGHTE, DV11,DV12, DY
113,DV21,DV22,DV23,DELV1, DELV?2, DELY
GO TO 1031
1041 URITE(6,136)DELTTY, PHIF, ANUL B, A, 01, THI, DELTTH, UG, DV1T,0V12, 5y
113,0V21,0V22,DV23,5ELV1,DELVE, BELY
G0 TO 1031
1030 I1F(K.GT.1)GO TO 1033
FFCOPTION.GT.1.59G0 TO 1042
WRITE(G,120)DELTTT, PHIF, ANUT,E, A, ¢
113,DV21,0V22,DV23,DELV1,DELV?, Ot
30°T0 1031
1042 VRITE(6,134)0ELTTT, PHLE, ANUL,E,A, 31, Till, DELTTIL RGN, VL1, DV12, DV
113,0V21,DV22,0V23, DELVL. DELVS, DELY
GO TO 1031
1033 {F(OPTICH.GT.1.5)G0 TO 1043
HRITE(6,122)DELTTT, PHIF, ANUL, E, A, B, THI,DELTTI, RNV I, VLD, 2Vi2, DY
113,DV21,DV22,DV23,;DELVL, DELV2, DELY
G0 TO 1031
1043 URITE(S,136)DELTTT,PIF,
113,0V21,DV22,0vY23,0ELV1,
1031 CONTIHUE
c CONVERT BACK TO DILIDHSIONLESS TIE
IE(OPTION.LT.1.5)G0 TO 1028
IECCPTIGH, Ll.2 5)G0 TO 1072
DELTTT=86400,*DELTTT/TPER
DELTTU=86400,+DELTTU/TP A
55 T0 1028
1072 SELTTT=60.#*)ELTTT/TPID
ELTTU=G00.*DELTT/TPED

LB, THI,DELTTYH, RHCIIN M, V1L, 2V12,0V
Ly

f!JI HD T THL, RELTT, 0N, BV, VY12, Y
DELV2,DELY

1023 PG TIHUE

1F(AUInE-1, 5)1003 1015,1915
1603 IF(OELTT.=TUF ‘T)1q0L,1 05,1005
1004 SELTTVU="ELTTU+DELTY

1.0=0

00 TGh2 ,
1005 1F@IG.GT,. 1)”u TG 10067

PF(DELTTV=UT i 7)1.066,7007,1007
L0GG DELTTU=DTVF

NG=2

GO TC 42
1007 IF(UELTTT -TTFIDT)10605,1909,100¢%
1008 QELTTT=DCLTTT+OELTT

1i0=0

{i01=0

1S1G=48

CALL SPACE

VRITE(G,120h)

CALL CONVRT(RELTTT,CnTT,OPTION, TRE™)

FFCGPTION.GT.2.5)20 T 1060

URITE(5,130)007T
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1060
1061

1009
1010

1062
1063

1011
1012

1064
1065

1013
1014

1066
1067

APPENDIX E

GO TO 1061

WRITE(G,140)CRTT

J=J+3

GO TO Ll

IF(NO1.GT.1)G0 TC 1011

| F(DELTTT-DTTFT)1010,1011,1011
DELTTT=DTTF

HG=0

NO1l=2

1S1G=48

CALL SPACE

URITE(G,124)

CALL CONVRT(DELTTT,CODTT,CPTICHN,TPER)
IF(OPTION.GT.1,5)G0 TO 1062
WRITE(6,130)CDTT

GO TO 1063

WRITE(6,1L0)CDTT

J=J+3

GO TO 41
IF(ANUO=-ANLIMDN)1012,1013,1013
ANUO=ANUO+DELKUOC

NO=0

NO1=0

NO2=0

1S1G=47

CALL SPACE

WRITE(G,124)
ANUO=ANUQ/.17453293E-01
VIRITE(6,132)ANUO

CALL CONVRT(DTTI,CDTTI!,OPTICON, TPER)
IF(OPTION,GT.1.5)GC TO 1064
WRITE(6,130)CDTTI

GO TO 1065
WRITE(6,140)CDTTI
ANUO=ANUO=,17453293E-01
J=J+3

GO TO &40

IF(NO2.GT.1)G0 TO 12

I F(ANUO-ANUOLT)101k,12,12
ANUO=AHUOL

NC=0

NC1=0

NO2=2

IS1G=47

CALL SPACE

WRITE(6,124)
ANUO=AMUO/.17453293E-01
WRITE(6,132)ANUO

CALL CONVRT(DTTI,CDTTI,COPTIOHN,TPEN)
| F(OPTICN.GT.1.5)G0 TO 1066
WRITE(G6,130)COTT!

GO TO 1067
WRITE(G6,140)CDTT!
ANUO=ANUO*,17453293E-01



1015

1016

1017

1018

1019
1020

1080
1081

1021
1022

1082
1083

1023
102k

APPENDIX E

J=Jd+3

GO TO 4o .
IF(DELTTT-TTFiiDT)1016,1017,1017
DELTTT=DELTTT+DELTT

NC=0

GO TC L2

IF(H0.GT.1)G0 TO 1019
IF(DELTTT-DTTFT)1018,1015,1C18
DELTTT=DTTF

NG=2

GO TC 42
IF(DELTTYW-TUFIDT)1020,1021,1021
DELTTW=DELTTU+DELTY

Ho=0

[1101=0

1S1G=438

CALL SPACE

WRITE(G,124)

CALL CONVRT(DELTTY,CDTW,OPTICH,TPER
{F(OPTIOI!.GT.1.5)G0 TO 1080
VRITE(6,128)CDTY

G0 TC 1081

WRITE(6,138)CDTY

J=Jd+2

GO TO 45

1F(N01,.G6T.1)GC TO 1023
PF(DELTTU~DTWFT)1022,1023,1023
DELTTW=DTUF

NG=0

H01=2

151G=048

CALL SPACE

WRITE(S,12h)

CALL CONHVRT(DELTTW,COTU,CPTICH,TPER)
[F(OPTION.GT.1.5)G0 TC 1082
WRITE(G,128)CDT\

GO TO 1083

VRITE(G,138)CDTU

J=J+2

GO TO 45

P F(AHUO-ANLIADN)1024L,1025,1025
ARUO=ANUO+DELNUO

HO=0

HO1=0

NQ2=0

1S1G=047

CALL SPACE

WRITE(6,124)

ANUO=ANUO/ .17453293E-01
WRITE(6,132)ANUO

CALL COMVRT(DTWI ,CDTW!,OPTION, TPER)
IF(OPTION.GT.1.5)GC TO 108h
URITE(6,128)CRTHI

75
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1025
1026

1086
1087

12
100
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GO TO 1085
WRITE(6,138)CDTH |
ANUO=ANUO=*,17453293E~01
J=J+3

GO TC &b

IF(NO2,GT.1)GO TO 12
IF(ANUO-ANUOLT)1026,12,12
ANUG=ANUOL

NO=0

NO1=0

NO2=2

1S1G=L7

CALL SPACE

WRITE(6,124)
ANUO=ANUO/.17453293E~01
WRITE(6,132)ANUO

CALL CONVRT(DTWI,CDTWI,OPTION, TPER)
IF(OPTIOMN.GT.1.5)G0 TO 1086
WRLTE(6,128)CDTWI

GO TG 1087
WRITE(6,138)CDTWI
ANUO=ANUO*,17453293E~01
J=J+3

GO TO &4

WRITE(6,104)

GO TO 10

FORMAT(4E18.8)

102 FORMAT(//LXL2HVELOCITY INCREMENT REQUIRED FOR RENDEZVOUSIX37HBETUE
1EN TWO ARBITRARY ELLIPTIC ORBITS//)

104 FORMAT(1H1)

106 FORMAT(7E18.8)

108 FORMAT(12X2HETIG6X2HE!I16X2HAI 12X6HCGHEGAI L5X3HOMI16X2HI 1)

110 FORMAT(L1O0XLHPHIOLEXLHNUOLILXEHNUOLLIEX2HMULGX2HATIUXEHTPERLISX3HVCT)

112 FORMAT(IOXGHDTTII4XGHDTTFILXLHDTUH I LEXEHDTUF32XLHRIIINITXIHID

114 FORMAT(12X2HX016X2HYO16X2HZOILXLHXODTILXEHYODTILXSHZOST)

116 FORMAT(LAGHDELTTW3XUBHPHIFLX3HHUIBXIHEEXIHAGXIHISX3HTHI IXEHDELTTHLX

CIBHRHOMBXLHDVIXLXEHDVIYEXGHDVIZUXLEDV2XEXLHDV2YEXUHDV2Z2X5HDELV12X

118

120
122
124
126
128
130
132
134
136
-138
140
1hh
148

76

25HDELV23XLHDELV//)
FORMAT(IX6HDELTTT3XUHPHIFLX3HHUI6XIHESXIHAGXIHISX3HTH] IXGHDELTTHLX
IGHREOMEXEHDVIXEXEHDVIYEALHDYIZEXLHD VZXhXhiDVZYhahP DV2Z2X5HDELV12X
25HDELV23X4HDELV/ /)
FORMAT(F7.4,2F7.2,F7,4,F7.3,F7.2,F8,.2,F7.2,F5.2,6F8.5,3F7.4//)
FORMAT(F7.4,2F7,2,F7.4,F7.5,F7.2,F8.2,F7.2,F5.2,6F8.5,3F7.4,1H%//)
FORMAT(1X//)

FORMAT(4E18.8,E36.8,E18.8)

FORMAT(LASHDELTTW= F7.4)

FORMAT(1XSHDELTTT= F7.L)

FORMAT (4X5HNUO= F7.2)
FORMAT(F7.1,2F7.2,F7.4,F7.3,F7.2,F8,2,F7.,2,F5.2,6F8.5,3F7.4//)

FORMAT(F7.1,2F7.2,F7.4,F7.3,F7.2, F8.2,F7.2, F5.2,6F8.5,5F7.%,10%//)
FORMAT(1X8HDELTTH= F7,.1)

FORMAT(1XSHDELTTT= F7.1)

FORHAT(G6X20HAT IS LESS THAN ZERG//)
FORUAT(LOXLHPHI016X2HET16X 21 UL6X 2HAT LU XEHTPERISX3HVCT)



APPENDIX E

150 FORMAT(LXk1H! EQUAL +/-~390 DEGREES NOT ACCEPTABLE DATA//)

160 FORMAT(10X19HDELTA THETA EQUALS F6.1,1X39HDEGREES. DG NOT CONSIDE
1R UNLESS ORBITS1X25HINTERSECT, IN WHICH CASE,)

162 FORMAT(6X4LSHDTT! INPUT EITHER AS ZERO OR A NEGATIVE QUANTITYL1X23HE
1UT EQUATED TO DELTT ( F10.4,1X33H) BY PRCGRAM. RECONSIDER INPUT.
2/7)

164 FORMAT(10X20HTHIS CASE (DELTTW = F10.4,1X37H) IS A LIMITING HYPERS
10LIC ORBIT WITHIX1ul'E APPROACHING F10.5//)

166 FORMAT(10X20HTHIS CASE (DELTTT = F10.4,1X37H) IS A LIMITING IYPERSB
10LIC ORBIT WITHIX14HE APPROACHING F10.5//)

END

FUHCTION AAA(ALPHA,BETA,GAIHIA)
GAMMA EQUAL 1,EXCEPT FOR HYPERBOLIC ORBITS WHEN IT IS -1
PINUM=3,1415927
BETA2=BETA/2.0
ABETA2=ABS(BETA2)
SBETA2=SIN(BETA2)
IF(SBETA2.GT.0.0.AND,ABETA2.GT.1.5707785,AND.ABETA2.LT.1.5708.37)¢C
10 TO 1
éF(SBETAZ.LT.0.0.AND.ABETAZ.GT.I.5707789.AND.ABETA2.LT.1.5708137}G
10 TO 2
SUB1=(SQRT(GAMMA#*(1.0-ALPHA)/(1.0+ALPHA)))*(SBETA2/(COS(BETA2)))
APR=2,*ATAN(SUB1)
GO TO 3
1 APR=3,1415927
GO TO 3
2 APR=-3,1415927
3 N=(BETA+PINUM)/(2,*PINUI1)
AN=N
AAA=APR+2, % AN*P | NUM
RETURN
END

SUBROUTINE VELOC(Y11,Y12,Y13,H11,H12,H21,H22,H31,H32,S1,S2)
Y11=H11#S1+H12%S2

Y12=H21#S1+H22%82

Y13=H31+S1+H32%S2

RETURN

END

1
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SUBROUTIRE SIX(W11,vw12,%W21,422,%3%1,%32,01,02,U3)
CU1=C0S(U1)

SUl=s1H(UL)

CU2=Cc0S(U2)

SU2=SIN(U2)

CU3=C0S(U3)

SU3=S1N(U3)
111=CULl*CU2-CU3%xSU2%SU1
W12==-8U1*CU2-CU3%SU2+CUL
W21=CU1#SU2+CU3%CU2%SU1
W22==-SU1%xSU2+CU3*CU2+CUL
1i32=8U3%5U1

132=SU3+=CUl

RETURHN

END

SUBROUTINE ANCM(ECCEN, AMANOI, EANOLD
BARM=AMANOM
E=ECCEN
EAO=BARM+E*S IN(BARM)+ ., 5#Ex#2%SIN(2.*BARM)
EA=EAQ

16 AMA=EA-E*SI1H(EA)
DELHMA=BARM=-AMA
DELEA=DELMA/ (1.~-E*COS(EA))
EA1=EA+DELEA
ADELEA=ABS(DELEA)
CONTST=(EAL-EA)/EAL
ACT=ABS(CONTST)
IF(ACT-.1E-06)17,15,15

15 EA=EAlL
GO TO 16

17 EANOM=EA
RETURN
END

SUBROUTINE SPACE

COMMON J,GUIDE, ISIG

IF(ISIG=-J)10,10,11
10 WRITE(6,101)
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IF(CUIDE.GT.1.5)G0 TO 12
RITE(5,103)
GO TO 13
12 HRITE(G,104)
13 J=5
RETURIM
11 CONTIHNUE
RETURN

101 FORMAT(1HIL)

103 FORIMAT(IXGHDELTTWIXLHPHIFLUX3HNULIGXLHEGNIFASKIN IS BHTHIIXGHOELTTRIA
1hHRHOM4XhHDV1XhXhHDVlYhXhHDV17thHDV2A.A4HDV2Y&VL““ 222X5HDELV12X
25MDELV23XLIIDELV//)

104 FORMATCIXGUHDELTTT3XLEPHIFLBHNUIGXINEGXIHACXIVIBUIHTHIIXGHIELTTHLIX
THHRHONEXEHDVIXEXLHDVIYLEXGHDYIZEXENDY 2 LRIV 2YLXNITV2I2X5H2ELVIZN
25HDELV23XEUHDELY/ /)

END

SUBROUTINE COMNVRT(TUIHE, CTIHE, OPTION, TPER)
TO CONVERT TIHE FRO#M DIHENSIOHLESS QUA‘TIIIES TO UNITS
CORRESPONDING TO INPUT

IF(OPTION.LT.1.5)GQ TO 1
IF(OPTION.LT.2.5)G0 TO 2
CTINE=TIIE+*TPER/86400.
RETURT!

1 CTHIE=TIIE
RETURN

2 CTIHE=TIE*TPER/G0.
RETURN
END

9
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TABLE I
COMPUTER PRINTOUT OF EXAMPLE 1

VELOCITY INCREMENT REQUIRED FOR RENDEZVOUS BETWEEN TWO ARBITRARY ELLIPTIC ORBITS

ET El Al OMEGAT UMI
0.93371999%9E-C1 N.16724200E-01 0.6563010CE 00 0.25387999E 03 0.233C1999E 03 0.18499999F 01
PHIO NUO1L NUOL MU AT TPER
0.32439999€ 03 0.37C000CCE-00 0.3700CQ00E-CD 0.46789999E 22 0.T4T36999E 12 0.59348101F C8
DTTI DTTF DTwWi DTWF RMIN
C.16000CCCE €3 0.2600C000E 03 0. 0.400CG0C0E 022 0.39378100€-00
NUO= 0.37

DELTTH= C.

DELTTT PHIF NUI E A 1 THI DELTTH RHOM Bv1X DviY bviz Dvex bva2y ovaz
160.0 423.41 Ce37 0.6758 0.627 1,65 —134.33 296414 0420 0.78032-0.44667 02.03413-0.51167-0.05421 0.01771
18C.0 434.75 0437 0.6661 0.596 1.87 -136.86 307,48 0,20 0.76728-0.40968 0.02693-0.44464 0.01959 0.01944
200.0 445,71 0.37 C.6883 0.583 2424 -139.61 318.43 0,18 0.,80293-0.40036 0.01994-0.44264 0.10123 0.02198
220.C 456.29 2.37 0.7463 J.581 2,88 -143,67 329.C0 Co15 0.90147-0.40946 0.01285-0.51051 0.17498 0.02549
240.0 466.52 0.37 C.8392 0.586 4,19 -150.66 339,22 0.09 1.08507-0.41653 0.00574-0.65745 0.21178 0.02985
260.0 476.43 0.37 0.5427 0.598 7.86 ~162.05 349.07 0.03 1.36525-0437671-0.00035-0.87692 0.15690 0.03412

DELTTH= 2C.C
160.0 434,75 20.74 0.6640 0.668 1.86 ~129.46 287,10 €.22 0.87931-0.19262 J,02853-0.46880-0.20692 0.02048
180.0 445,71 2C.74 0.6432 0,630 2.01 =131.76 298,06 0.22 C.84048-0.16181 0.,02048-0.40512-0.12722 0.02168
200.0 456.29 20.74 C.6486 G(.612 2427 -134.02 368463 0.22 Cu84514-0,14257 0.01297-0.39640-0.05278 0.02360
220.0 466,52 20 .74 0.6817 G.606 2.70 =136.89 318,86 0.19 0.89663-0.12717 0.C0561-0.43889 0.00647 0.02635
240.C 476,43 20.74 C.T7448 0.607 3.43 -141,.3]1 328.75 0,16 1.00350-0,10339-0.00183-0.53243 0.03607 0.03004
26C.0 486.05 20.74 0.8348 0.614 4.82 -148.51 338.34 0.1C 1.17529-0.04870-0.00926=-0.67511 0.01106 0.03454

DELTT W= 4C.C
160.0 445,71 41.03 0.6567 0.716 1,86 -124.49 277,77 0.25 0.89B17 0.G7952 3.02058-0.39029-0.34103 0,02106

DELTTT PHIF NUI E A 1 THI DELTTH RHOM DV1X DVliY oviz pvz2x Dv2y bv2z
18C.0 456429 41.03 0.6258 0.668 1.94 -126.59 288435 C,25 0.83996 0.09298 0.01247-0.33246-0.25209 0.02159
20C.C 466,52 41.03 C.6178 J.645 2410 -128,52 298.57 (.25 G.81985 0.10684 0.00515-0.32083-0.17773 0.02273
220.0 476443 41.03 0.6321 0.634 2436 —130.68 308,47 0,23 0483549 0.126G0-0.00178-0434789~0.12324 0.02455
24C.0 486.05 41.03 C.6659 0.632 2.76 =133.65 318.08 0.21 0.88813 0.15766-0.00864-0.40926-0.,09563 0.,02712
260.C 495.41 41.23 7.7325 C.635 3443 =138.19 327.43 0.17 0,98113 C.21375-G.C1563-0.50157-0.10622 0.03056

veT

0.79124083E 05

H
0.30000000€ 01

DELVL
0.8998
0.8702
0.8974
0.9902
1.1623
1.4163

0.9006
0.8562
0.5572
0.9056
1.0088

1.1763

0.9019

DELV]
0.8452
0.8268
0.8449
0.9021
1.0043

DELV2
0.5148
0.4455
0.4546
0.5403
0.6914
0.8915

0.5128
0.4252
0.4006
0.4397
0.5345

0.6761

0.5187

DELV2
0.4178
0.3675
0.3699
0.4212
0.5136

DELV
1.4146%
1.3157#
1.3520%
1.5305%
1.8537%
2.3078*

1.4135%
1.2813*
1.2578%
1.3453%
1.5433%

1.8524%

1.4206%

DELYV
1.2630%*
1.1943%
1.2148%
1.3232%

1.5179% .

.
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TABLE L

COMPUTER PRINTOUT OF EXAMPLE 2

VELOCITY INCREMENT REQUIRED FOR RENDEZVOUS BETWEEN TwD ARBITRARY ELLIPTIC ORBITS

ET
0.23400000£-01
PHIO
Q.
DTTI
0.20C000C0E €2
Xu

-0.16920000E-C1

NUQ= 0.49
DELTTT= 20.0
DELTTW PHILF NUI

0. 79.17 0.49

10.0 117.22 44.59

2040 154,27 8C.01

30.0 190.85 106.69

DELTTT= 30.0

- 0.0 1l7.22 C.49
10.0 154.27 44.59
20.0 19C.85 8C.01

30.0 227.63 106.69

DELTTIT=
Q.

4C,C

154.27 0.49

10.0 19C.85 44.59

20.0 227.63 80.01

VELTTw PHIF NUL

300 265,23 106.69

El
0.29089106E-00
NUO1
C.48625083E~-00
DTTF
0.4CCO00C0E 02
Y0
0.37599999E-01

E A
0.C499 0.948
C.0735 0.964
€.1979 1.271
0.6942 3.3CC
C.0379 C.S74
0.0312 1l.0Ce
0.1500 1.197
C.4355 1.713
0.0367 0.987
C.0196 1.019
0.1204 1.137

E A
Ce3124 14344

0.

C.

O.

Al OMEGAI oMI
0.13543878E 01 0. 0.17574345E 01
NUOL MU AT
0.48625083E-00 0.14080000€ 17 0.22480000E 08
DTwl DTWF
0. 0.30000000E 02
L0 XooT YODT
0. ~0.,37599999E-02 0.15260000E~00
1 THI DELTTH RHOM DV1lX DV1Y ovlz Dv2x
107.97 76493 0.96 0.05227-0.14489 0. ~0.02179
155.04 70.87 1.01-0.01005-0.20010 0. -0.05237
280,13 72.50 1.02~0.05508-0,43009 0. 0.01498
292.34 8240 1.01 0.09842~0.74862 Q. 0.08038
71.C9 114.98 0.96 0,03930-C.13126 0. -0.02346
132,66 107.92 1.02-0.03276-0.19063 0. =-0.03231
266,85 109.08 1.,02-0.03019-0.39549 0. 0.02658
273443 119.18 0.97 0.15056-0.60254-0., 0.01612
45,21 152.03 0.96 0.02890-0.12482 0. -0.02205
L13.84 144.49 1.42-0,04107-0,18982 0. -0.01610
245,09 145.86 1.00-0.00549-0.36346~0, 0.00835
I THI DELTTH RHOM DV1X Dvly bviz Dvax
250,68 156.78 0.92 0.17237-0.48852-0. -0.08178

11
0.
TPER
0,56438179E
RMIN

04

0.95400C000E 00

00T
On

bvay
0.032¢3 0.
0.05712 Q.
0.10739 Q.

¢.32180 0.

0.01591 0.
0.01876
0.08689 O,

0.27834 0.

C.00286
0.00656 0.

0.09499 0.

ovay

0.24000 O.

Dv2z

bvaz

VvCT
0.25026675E 05

H
0.30000000E 01

DELV1 DELV2 DELY

0.1540 0.0387 0.1928

0.2004 0.0775 0.2779

0.4336 0.1084 0.5420

0.7551 0.3317 1.0867

C.1370 0.0283 0.1654

0.1934 0.0374 0.2308

0.3966 0.0909 0.4875

G.6211 N.2788 0.8999

0.1281 0.0222 0.1504

0.1942 0.0174 0.2116

0.3635 0.0954 0.4589

DELV1 DELV2 DELV

0.5180 0.2535 0.7716%
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TABLE I@
COMPUTER PRINTOUT OF EXAMPLE 3

VELULITY INCREMLNT REQUIRLEY ruk RENUEZVUUS oETWEEN TWwO ARBITRARY ELLIPTIL JRBITS

T el Al OMEGAT UM I 11
Ved0uUULOUOE Uu G« 200003 JVE-QU U.40u000030c O 0.90303000t 02 -J.9J0UJJ00E 02 0.30000000E 02
PHILO NUul NJOL MU AT TPER
0. Ce 0.34000000k 03 0.09999999E 01 J3.39999999E GOl 0.62831 853 01
viTa uTTkH UTAl DTWF RMIN
e JULUCLOOE-UL U.10C79999c 0Ol Ge c. 0.45000000E-00
NUU= O.
DELTTW= U,
veLTTT PHik NJ1 £ A 1 IHAD CELTYH RHUM DvlX uvly uvlz ovZXx Dv2yY pv2i

0.U900  d5.54 G 1.0741 -84373 -30.un -42.83 86.14 0.,02-0.52733 0.2652@¥3.37539 0.15390-0.08548~0.78742
0.0950 9U.09 C. Ue9973¢34.374 ~30.00 =-42.08 90.60 0.563-0.52175 0.20505*0.29045 0.13805-0.08853-~0.74180
0.1080 904l G. Je933L  YauT5 =30.11 —4l.27 94.69 0.63-0.51804 0.4449@*0.21509 0.12523-0.09078-0.70540

UellTC Y970 0. 0.8784 54260 -30.36 -40.47 98.44 0.64-0.51571 0.22300%0.14709 0.11451-0.09247-0.67604

"0.1200 103.70  U.  U.8311 3.518 =30.73 ~39.05 101.91 0.64-0.51449 0.20699%3.08487 0.10529-0.09385-0.65216

001350 107.32  U.  0e789T 3.590 =31.19 -38.81 105.11 0.05-C.51415 O.1udb6%) 02725 0.09715-0.09508~0.63265
Gel440 £LUe%y  Ue  UaT531 24651 =31a73 ~37.95 108.08 0.65-0.51458 0.1702u~0.02664 0.08962-0,09633-0.61667
Ga1930 114425 ue ULT205 24358 -32.34 -37.07 110.83 G.06~0.51566 Cel5133-3.07749 0.08308~0.09769-0.60359
0e1620 L17.30 Je  Ue0912 2.148 —33.01 =36.17 113.41 0.66-0.51732 0.1333>-0.12581 0.07681-0.099270. 59294
DelTlu 120048 Gs  0e6047 1.990 -33.74 =-35.24 115,81 0.07-0.51949 0.11457--.17203 0.07089-0.10113~0.58433
0el80u 122.9U  Us 006407 leob8 —34451 =—34.28 118406 C.67-Ce52213 0.09571~0.2lo48 0.06528-0.10333~0.57746
041890 1oead  Ca  Usblds 1770 —35.34 =—33.31 120.17 0.67-0.52519 0.07030-0.25%44 0,05990-0.10592-0.57209
0ol98U L27.93 0.  0.5987 1.090 —36.20 =—32.30 122416 0.68-0.52864 0.05000-0430114 0.05474-0.10893~0.56803
UalLTU 133.27 0. ©e5302 Led24 =37.l1 =~34.27 124.04 0.68-0.53244 0.03628-0.34175 0.04976-0.11238-0.56511

Ueldl6U 13cadV Ue Jeb0642 ledo8 =33.07 -30.22 125.8]1 0.68-0.53655 0.01534-0.38143 0.04496-0.11632-0.56321

vCeT

0.09999999E 01

H

0.30000000E 01

DELV1
0. 7066
0.6528
0.6119
0.5818
0.5610
0.5483
045427
0.5431
0.5488
0.5591
0.5733
0.5907
0.6110
0.6337

0.6585

DELV2
0.8069
0.7597
0.7222
0.6919
0.6672

0.6471

'0.6306

0.6171
0.6061
0.5972
0.5903
0.5849
0.5810
0.5783

0.5768

DELV
1.5134
1.4125
1.3340
1.2737
1.2283
1.1954
1.1732
1.1602
1.1549
1.1564
1.1635
1.1756
1.1920
1.2120

1.2353

- gl



“The aeronautical and space activities of the United States shall be
conducted so as to contribute . . . to the expansion of human knowl-
edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958
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TECHNICAL REPORTS: Scientific and technical information considered
important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless
of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS: Information receiving limited distri-
bution because of preliminary data, security classification, or other reasons.

CONTRACTOR REPORTS: Technical information generated in con-
nection with a NASA contract or grant and released under NASA auspices.

TECHNICAL TRANSLATIONS: Information published in a foreign
language considered to merit NASA distribution in English.

TECHNICAL REPRINTS: Information derived from INASA activities
and initially published in the form of journal articles.

SPECIAL PUBLICATIONS: Iaformation derived from or of value to
NASA activities but not necessarily reporting the results -of individual
NASA-programmed scientific efforts. Publications include conference
proceedings, monographs, data compilations, handbooks, sourcebooks,
and special bibliographies.

Details on the availability of these publications may be obtained from:
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